Using radio telemetry to track ground beetles: Movement of Carabus ullrichii
Abstract
Radio telemetry is an advanced method for studying movement behaviour which is one of the keys to under-standing species ecology and biology. Using this method we studied the movement of Carabus ullrichii Germar, 1824, a large and apterous ground beetle species. Four individuais (one male, three females) were equipped with 0.28 g transmitters and radio-tracked for 10 days in three hour intervals in mosaic rural area; meadow and orchard. We found that maximum distance covered by an individual during this period was 120.9 m and C. ullrichii travelling speed in such habitat ranged from 1.69 to 13.43 m per day. Our preliminary results indicate that diurnal activity of this species is not affected by light conditions but by temperature. Beetles were most active at temperatures 15.0-17.4°C. Here we provide the first study of the movement ability of this species.
Key words
carabid beetles Carabus ullrichii radio-tracking telemetry movementPreview
Unable to display preview. Download preview PDF.
References
- Andorkó R. 2014. Studies on carabid assemblages and life-history characteristics of two Carabus (Coleoptera, Cara-bidae) species. Ph.D. thesis. Faculty of Sciences, Eötvös Loránd University, Budapest, 97 pp.Google Scholar
- Baars M.A. 1979. Patterns of movement of radioactive carabid beetles. Oecologia 44 (1): 125–140. DOI: https://doi.org/10.1007/BF00346411PubMedCrossRefPubMedCentralGoogle Scholar
- Bates D., Maechler M., Bolker B. & Walker S. 2014. Ime4: Linear mixed-effects models using S4 classes. R package version 1.1-7. https://doi.org/CRAN.R-project.org/package=lme4Google Scholar
- Bérces S. & Elek Z. 2013. Overlapping generations can balance the fluctuations in the activity patterns of an endangered ground beetle species: long-term monitoring of Carabus hun-garicus in Hungary. Insect Conserv. Divers. 6: 290–299. DOI: https://doi.org/10.1111/j.1752-4598.2012.00218.xCrossRefGoogle Scholar
- Bretz R., Hothorn T. & Westfall P. 2010. Múltiple Comparisons Using R. Boca Raton, CRC Press, 205 pp. ISBN: 978-1-58488-574-0Google Scholar
- Brouwers N.C. & Newton A.C. 2009. Movement rates of wood-land invertebrates: a systematic review of empirical evidence. Insect Conserv. Divers. 2 (1): 10–22. DOI: https://doi.org/10.1111/j.1752-4598.2008.00041.xCrossRefGoogle Scholar
- Chiari S., Carpaneto G.M., Zauli A., Zirpoli G.M., Audisio P. & Ranius T. 2013. Dispersal patterns of a saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands. Insect Conserv. Divers. 6 (3): 309–318. DOI: https://doi.org/10.1111/j.1752-4598.2012.00215.xCrossRefGoogle Scholar
- Firle S., Bommarco R., Ekbom B. & Natiello M. 1998. The influence of movement and resting behaviour on the range of three carabid beetles. Ecology 79 (6): 2113–2122. DOI: https://doi.org/10.2307/176714CrossRefGoogle Scholar
- Hagen M., Wikelski M. & Kissling W.D. 2011. Space use of bum-blebees (Bombus spp.) revealed by radio-tracking. PLoS One 6 (5): e19997. DOI: https://doi.org/10.1371/journal.pone.0019997PubMedPubMedCentralCrossRefGoogle Scholar
- Hedin J., Ranius T., Nilsson S.G. & Smith H.G. 2008. Restricted dispersal in a flying beetle assessed by telemetry. Biodivers. Conserv. 17 (3): 675–684. DOI: https://doi.org/10.1007/s10531-007-9299-7CrossRefGoogle Scholar
- Holland J.M. & Luff M.L. 2000. The effects of agricultural prac-tices on Carabidae in temperate agroecosystems. Integrated PestManage. Rev. 5 (2): 109–129. DOI: https://doi.org/10.1023/A:1009619309424CrossRefGoogle Scholar
- Hothorn T., Bretz F. & Westfall P. 2008. Simultaneous Infer-ence in General Parametric. Biom J. 50 (3): 346–363. DOI: https://doi.org/10.1002/bimj.200810425PubMedCrossRefGoogle Scholar
- Hůrka K. 1996. Carabidae of the Czech and Slovak Republics. Kabourek, Zlín, 566 pp. ISBN: 80-901466-2-7Google Scholar
- Hůrka K. 2005. Beetles of the Czech and Slovak Republics. Kabourek, Zlín, 394 pp. ISBN: 8086447111Google Scholar
- Kareiva P. 1990. Population dynamics in spatially complex envi-ronments: theory and data. Phil. Trans. R. Soc. Lond. B 330 (1257): 175–190. DOI: https://doi.org/10.1098/rstb.1990.0191CrossRefGoogle Scholar
- Kawaga Y. & Maeto K. 2009. Spatial population structure of the predatory ground beetle Carabus yaconinus (Coleoptera: Carabidae) in the mixed farmland-woodland satoyama land-scape of Japan. Eur. J. Entomol. 106 (3): 385–391. DOI: https://doi.org/10.14411/eje.2009.049CrossRefGoogle Scholar
- Kennedy P.J. 1994. The distribution and movement of ground beetles in relation to set-aside arable land, pp. 439–444. DOI: https://doi.org/10.1007/978-94-017-0968-2.66. In: Desender K., Dufrene M., Loreau M., Luff M.L. & Maelfait, J.P. (eds), Carabid Beetles Ecology and Evolution, Series Entomologica Vol. 51, Kluwer Academic Publisher, Dordrecht, Boston, London, 476 pp. ISBN: 978-90-481-4320-7, DOI: https://doi.org/10.1007/978-94-017-0968-2Google Scholar
- Kenward R.E. 2000. A Manual for Wildlife Radio Tagging. Academic Press 2nd ed., San Diego, 311 pp. ISBN-10: 0124042422, ISBN-13: 978-0124042421Google Scholar
- Kissling D.W., Pattemore D.E. & Hagen M. 2014. Challenges and prospects in the telemetry of insects. Biol. Rev. 89: 511–530. DOI: https://doi.org/10.1111/brv.l2065CrossRefGoogle Scholar
- Kotze D.J., Brandmayr P., Casale A., Dauffy-Richard E., Dekoninck W., Koivula M.J., Lovei G.L., Mossakowski D., Noordijk J., Paarmann W., Pizzolotto R., Saska P., Schwerk A., Serrano J., Szyszko J., Taboada A., Turin H., Venn S., Vermeulen R. & Zetto T. 2011. Forty years of carabid beetle research in Europe - from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation, pp. 55–148. DOI: https://doi.org/10.3897/zookeys.100.1523. In: Kotze D.J., Assmann T., Noordijk J., Turin H. & Vermeulen R. (eds), Carabid Beetles as Bioindicators: Biogeographical, Ecological and Environmental Studies, ZooKeys 100 (Special Issue), 573 pp. ISBN: 9789546425904Google Scholar
- Kromp B. 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and en-hancement. Agr. Ecosyst. Environ. 74 (1-3): 187–228. DOI: https://doi.org/10.1016/S0167-8809(99)00037-7CrossRefGoogle Scholar
- Levett S. & Walls S. 2011. Tracking the elusive life of the Emperor Dragonfly Anax imperator Leach. J. Br. Dragonfly Soc. 27 (1): 59–68.Google Scholar
- Lorch P.D., Sword G.A., Gwynne D.T. & Anderson G.L. 2005. Radiotelemetry reveais differences in individual move-ment patterns between outbreak and non-outbreak Mor-mon cricket populations. Ecol. Entomol. 30 (5): 548–555. DOI: https://doi.org/10.1111/j.0307-6946.2005.00725.xCrossRefGoogle Scholar
- Lövei G.L., Stringer I., Devine C. & Cartellieri M. 1997. Har-monic radar - a method using inexpensive tags to study in-vertebrate movement on land. N. Z. J. Ecol. 21 (2): 187–193.Google Scholar
- Lövei G.L. & Sunderland K.D. 1996. Ecology and behaviour of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41: 231–256. DOI: https://doi.org/10.1146/annurev.en.41.010196.001311PubMedCrossRefPubMedCentralGoogle Scholar
- Luff M.L. 1978. Diel activity pattern of some fleld Carabidae. Ecol. Entomol. 3 (1): 53–62. DOI: https://doi.org/10.1111/j.1365-2311.1978.tb00902.xCrossRefGoogle Scholar
- Lys J.A. & Nentwig W. 1991. Surface activity of carabid beetles inhabiting cereal flelds. Seasonal phenology and the influence of farming operations on flve abundant species. Pedobiologia 35 (3): 129–138.Google Scholar
- Niehues F.J., Hockmann P. & Weber F. 1996. Genetics and dy-namics of a Carabus auronitens metapopulation in the West-phalian lowlands (Coleoptera, Carabidae). Ann. Zool. Fenn. 33 (1): 85–96.Google Scholar
- Negro M., Casale A., Migliore L., Palestrini C. & Rolando A. 2008. Habitat use and movement patterns in the endan-gered ground beetle species, Carabus olympiae (Coleoptera: Carabidae). Eur. J. Entomol. 105 (1): 105–112. DOI: https://doi.org/10.14411/eje.2008.015CrossRefGoogle Scholar
- Pasquet R.M.S., Peltier A., Hufford M.B., Oudin E., Saulnier J., Paul L., Knudsen J.T., Herren H.R. & Gepts P. 2008. Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Nati. Acad. Sci. USA 105 (36): 13456–13461. DOI: https://doi.org/10.1073/pnas.0806040105CrossRefGoogle Scholar
- QGIS Development Team 2015. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://doi.org/www.qgis.osgeo.orgGoogle Scholar
- R Development Core Team 2015. R: A language and environ-ment for statistical computing. R Foundation for Statistical Computing, Vienna. https://doi.org/www.R-project.orgGoogle Scholar
- Ranius T. 2006. Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul. Ecol. 48 (3): 177–188. DOI: https://doi.org/10.1007/s10144-006-0262-3CrossRefGoogle Scholar
- Ranjha H. & Irmler U. 2014. Movement of carabids from grassy strips to crop land in organic agriculture. J. Insect. Conserv. 18 (3): 457–467. DOI: https://doi.org/10.1007/s10841-014-9657-1CrossRefGoogle Scholar
- Riecken U. & Raths U. 1996. Use of radio telemetry for studying dispersal and habitat use of Carabus coriaceus L. Ann. Zool. Fenn. 33 (1): 109–116.Google Scholar
- Riecken U. & Ries U. 1992. Untersuchung zur raumnutzung von laufkafern (Col.: Carabidae) mittels radio-telemetrie. Meth-odenentwicklung und erste Freilandversuche. Z. Okol. Nat. Schutz. 1: 147–149.Google Scholar
- Rink M. & Sinsch U. 2007. Radio-telemetric monitoring of dis-persing stag beetles: implications for conservation. J. Zool. 272 (3): 235–243. DOI: https://doi.org/10.1111/j.1469-7998.2006.00282.xCrossRefGoogle Scholar
- Svensson G.P., Sahlin U., Brage B. & Larsson M.C. 2011. Should I stay or should I go? Modelling dispersal strategies in saproxylic insects based on pheromone capture and radio telemetry a case study on the threatened hermit beetle Osmod-erma eremita. Biodivers. Conserv. 20 (13): 2883–2902. DOI: https://doi.org/10.1007/s10531-011-0150-9Google Scholar
- Szyszko J., Gryuntal S. & Schwerk A. 2004. Differences in loco-motory activity between male and female Carabus hortensis (Coleoptera: Carabidae) in a pine forest and a beech forest in relation to feeding state. Environ. Entomol. 33: 1442–1446. DOI: doi: https://doi.org/10.1603/0046-225X-33.5.1442CrossRefGoogle Scholar
- Szyszko J., Gryuntal S. & Schwerk A. 2005. Nocturnal activity of Carabus hortensis L. (Coleoptera, Carabidae) in two forest sites studied with harmonic radar method. Pol. J. Ecol. 53 (1): 117–222.Google Scholar
- Thiele H.U. 1977. Carabid Beetles in their Environments. Zoophysiology and Ecology Volume 10, Springer Verlag, Berlin, 369 pp. ISBN: 78-3-642-81156-2Google Scholar
- Tuf I.H., Dedek P. & Vesely M. 2012. Does the diunal activity pattern of carabid beetles depend on season, ground temper-ature and habitat? Arch. Biol. Sci. 64 (2): 721–732. DOI: https://doi.org/10.2298/ABS1202721TGoogle Scholar
- Turin H., Penev L. & Casale A. (eds). 2003. The Genus Carabus L. in Europe. A Synthesis. Fauna Europaea Evertebrata No. 2, Pensoft Publisher, Sofla-Moscow-Leiden, 540 pp. ISBN: 954-642-120-0Google Scholar
- Wallin H. & Ekbom B.S. 1988. Movements of carabid beetles (Coleoptera, Carabidae) inhabiting cereal flelds - a fleld tracking study. Oecologia 77 (1): 39–43. DOI: https://doi.org/10.1007/BF00380922PubMedCrossRefPubMedCentralGoogle Scholar
- Watts C. & Thornburrow D. 2011. Habitat use, behavior and movement patterns of a threatened New Zealand gi-ant weta, Deinacrida heteracantha (Anostostomatidae: Or-thoptera). J. Orthoptera Res. 20 (1): 127–135. DOI: doi: https://doi.org/10.1665/034.020.0112CrossRefGoogle Scholar
- White G.C. & Garrott R.A. 1990. Analysis of Wildlife Radio-tracking Data. Academic Press, San Diego, 383 pp. ISBN: 978-0-12-746725-2Google Scholar
- Wikelski M., Moskowitz D., Adelman J.S., Cochran J., Wilcove D.S. & May M.L. 2006. Simple rules guide dragonfly migra-tion. Biol. Lett. 2 (3): 325–329. DOI: https://doi.org/10.1098/rsbl.2006.0487PubMedPubMedCentralCrossRefGoogle Scholar
- Zlatník A. 1976. Přehled skupin typů geobiocénů původně lesních a křovinných ČSSR. Zprávy Geograflckého ústavu ČSAV, Brno 13 (3/4): 55–64.Google Scholar