, Volume 71, Issue 5, pp 516–527 | Cite as

The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia

  • Peter BalážiEmail author
  • Richard Hrivnák


Our study provides new knowledge about macrophyte assemblages and environmental variables of Slovak drainage and irrigation canals. The canal system, comprising ca. 15% of all flows in Slovakia, is one of the oldest in Central Europe. This information represents a first step toward exploitation of macrophytes as an obligatory biological quality element for the assessment of ecological potential according to the requirements of the Water Framework Directive. Among 61 canals studied, a total of 85 aquatic plant species (35 hydrophytes, 16 amphiphytes and 34 helophytes) were recorded during the years 2012-2014, including three neophytes and 18 threatened species. Physico-chemical variables explained the highest proportion of species variability, whilst hydromorphological variables and landscape variables were much less significant. Chemical oxygen demand, ammonium nitrogen, electrical conductivity, water pH, flow velocity and water depth were identified as most important drivers of species composition of aquatic macrophytes and explained 21.1% of the variability. The CCA results revealed differences in species composition of canals reflecting the geographical origin and environmental conditions as well, relating to South-Eastern and South-Western Slovakia. In conclusion, macrophytes in drainage and irrigation canals are able to reflect several environmental variables and might provide valuable information for bioindication in assessing the ecological potential.

Key words

aquatic and wetland plants ecology-macrophyte assemblage relationships man-made water body Pannonian lowlands Water Framework Directive 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the projects “Monitoring and status assessment” (Cohesion Fund Project No. 24110110001) and “Monitoring and status assessment - II. phase” (Cohesion Fund Project No. 24110110158). The authors would like to thank Dr. Dáša Hlúbiková for valuable comments and to all participants from Slovak Water Management Enterprise, who cooperated in sampling and analyzing of physico-chemical variables. The authors also thank the anonymous reviewer for having provided useful comments and suggestions on a previous version of the manuscript.

Supplementary material

11756_2016_7105516_MOESM1_ESM.pdf (78 kb)
The relationship between macrophyte assemblages and environmental variables in drainage and irrigation canals in Slovakia


  1. Armitage P.D., Szoszkiewicz K., Blackburn J.H. & Nesbitt I. 2003. Ditch communities: a major contributor to floodplain biodiversity. Aquat. Conserv. 13: 165–185CrossRefGoogle Scholar
  2. Baláži P., Tóthová L., Oťaheľová H., Hrivnák R. & Mišíková K. 2011. Checklist of taxa examined at localities monitored in the Slovak surface water bodies-macrophytes. Acta Envir. Univ. Comenianae (Bratislava), 19 (1): 5–89Google Scholar
  3. Baláži P., Hrivnák R. & Oťaheľová H. 2014. The relationship between macrophyte assemblages and selected environmental variables in reservoirs of Slovakia examined for the purpose of ecological assessment. Pol. J. Ecol. 62: 541–558CrossRefGoogle Scholar
  4. Baláži P. & Hrivnák R. 2015. Bryophytes and macro-algal growths as a part of macrophyte monitoring in rivers used for ecological assessment. Knowl. Manag. Aquatic Ecosyst. 416, 19.CrossRefGoogle Scholar
  5. Biggs J., Williams P., Whitfield M., Nicolet P., Brown C., Hollis J., Arnold D. & Pepper T. 2007. The freshwater biota of British agricultural landscapes and their sensitivity to pesticides. Agric. Ecosyst. Environ. 122: 137–148CrossRefGoogle Scholar
  6. Bornette G. & Puijalon S. 2011. Response of aquatic plants to abiotic factors: a review. Aquat. Sci. 73: 1–14CrossRefGoogle Scholar
  7. Cabecinha E., Cortes R., Pardal M. & Cabral J.A. 2009. A Stochastic Dynamic Methodology (StDM) for reservoir’s water quality management: validation of a multi-scale approach in a south European basin (Douro, Portugal). Ecol. Indic. 9: 329–345CrossRefGoogle Scholar
  8. CEN, 2003. European Standard E. 14 184 — Water quality. Guidance standard for the surveying of aquatic macrophytes in running waters. European Committee for Standardization, Brussels, 14 pp.Google Scholar
  9. Clarke K.R. 1993. Non-parametric multivariete analyses of changes in community structure. Aust. J. Ecol. 18: 117–143CrossRefGoogle Scholar
  10. Clarke K.R. & Gorley R.N. 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E. Plymouth, UK, 192 pp.Google Scholar
  11. Combroux I. & Bornette G. 2004. Effects of two types of disturbance on seed-bank and their relationship with established vegetation. J. Veg. Sci. 15: 13–20CrossRefGoogle Scholar
  12. Chytrý M. (ed.) 2011. Vegetace České republiky 3. Vodní a mokřadní vegetace. Academia, Praha, 828 pp.Google Scholar
  13. Chytrý M., Tichý M., Holt J. & Botta-Dukát Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13: 79–90CrossRefGoogle Scholar
  14. Davies B.R., Biggs J., Williams P., Whitfield M., Nicolet P., Sear D., Bray S. & Maund S. 2008a. Comparative biodiversity of aquatic habitats in the European agricultural landscapes. Agr. Ecosyst. Environ. 125: 1–8CrossRefGoogle Scholar
  15. Davies B.R., Biggs J., Williams P.J., Lee J.T. & Thompson S. 2008b. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597: 7–17CrossRefGoogle Scholar
  16. Dodds W.K. & Gudder D.A. 1992. The ecology of Cladophora. J. Phycol. 28: 415–427CrossRefGoogle Scholar
  17. Dorotovičová C. 2010. Aquatic macrophytes and the longitudinal floristic-ecological zonation of the Patinský canal. Acta Rer. Nat. Mus. Nat. Slov. 56: 45–58Google Scholar
  18. Dorotovičová C. 2013. Man-made canals as a hotspot of aquatic macrophyte biodiversity in Slovakia. Limnologica 43: 277–287CrossRefGoogle Scholar
  19. Dorotovičová C. & Oťaheľová H. 2008. The influence of anthropogenic factors on the structure of aquatic macrophytes vegetation in the Hurbanovský canal (South Slovakia). Arch. Hydrobiol. 166, Large Rivers 18(1–2): 81–90.Google Scholar
  20. Dykyjová D., Košánová A., Husák Š. & Sládeková A. 1985. Macrophytes and water pollution of the Zlatá Stoka (Golden canal), Třeboň Biosphere Reserve, Czechoslovakia. Arch. Hydrobiol. 105: 31–58Google Scholar
  21. Eliáš P. jr., Dítě D., Kliment J., Hrivnák R. & Feráková V. 2015. Red list of ferns and flowering plants of Slovakia, 5th edition (October 2014). Biologia 70: 218–228CrossRefGoogle Scholar
  22. European Environmental Agency 2000. Coordination of Information on the Environment — Land Cover 2000.Google Scholar
  23. European Union 2000. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L 327: 1–72.Google Scholar
  24. Ferreira M.T., Catarino L. & Moreira I. 1998. Aquatic weed assemblages in an Iberian drainage channel system and related environmental factors. Weed Res. 38: 291–300CrossRefGoogle Scholar
  25. Gyalokay M. 1972. Ochrana žitného ostrova. Práce a štúdie 62. Výskumný ústav vodného hospodárstva, ALFA, Bratislava, 128 pp.Google Scholar
  26. Haslam S.M. 2006. River Plants (revised second edition). Forrest Text, Ceredigion, 438 pp.Google Scholar
  27. Hrivnák R., Oťaheľová H. & Valachovič M. 2007. The relationship between macrophyte vegetation and habitat factors along a middle-size European river. Pol. J. Ecol. 55: 717–729Google Scholar
  28. Hrivnák R., Oťaheľová H., Kochjarová J. & Paľove-Balang P. 2013. Effect of environmental conditions on species composition of macrophytes — study from two distinct biogeographical regions of Central Europe. Knowl. Manag. Aquatic Ecosyst. 411, 9.CrossRefGoogle Scholar
  29. Hrivnák R., Kochjarová J., Oťaheľová H., Paľove-Balang P., Slezák M. & Slezák P. 2014. Environmental drivers of macrophyte species richness in artificial and natural aquatic water bodies — comparative approach from two central European regions. Ann. Limnol-Int. J. Lim. 50: 269–278CrossRefGoogle Scholar
  30. Jahnátek Ľ., Alena J., Barbarič M., Bielik P., M., Buday Š., K., Hrdá A., Illáš M., Jánošíková S., Jurík Ľ., Krištofíková J., Mihálek P., Mihina Š., P., Nagyová L., Németh F., Pícha E., Puškáč J., Sobocká J., Svetlík J., Tvrdá A., Vajs J. & Vargová J. 2014. Koncepcia revitalizácie hydromeliorarčných sústav na Slovensku. Ministerstvo pôdohospodárstva a rozvoja vidieka Slovenskej republiky. Bratislava, 51 pp. + Prílohy.Google Scholar
  31. Janauer G.A. 2003. Methods. In: Janauer G.A., Hale P. & Sweeting R. (eds), Macrophyte inventory of the river Danube: A pilot study. Arch. Hydrobiol. 14: 9–16Google Scholar
  32. Janauer G.A. & Dokulil M. 2006. Macrophytes and Algae in Running Waters, pp. 89–109. In: Ziglio G., Siligardi M. & Flaim G. (eds), Biological Monitoring of Rivers. John Wiley & Sons, Ltd., Chichester.CrossRefGoogle Scholar
  33. John D.M., Whitton B.A. & Brook A.J. (eds.) 2003. The freshwater algal flora of the British Isles: an identification guide to freshwater and terrestrial algae. Cambridge University Press, 701 pp.Google Scholar
  34. Jursa M. & Oťaheľová H. 2005. Distribution of aquatic macrophytes in man-modified waterbodies of the Danube River in Bratislava region (Slovakia). Ekológia 24: 368–384Google Scholar
  35. Koch E.W. 2001. Beyond light: physical, geological and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17CrossRefGoogle Scholar
  36. Kohler A., Vollrath H. & Beisl E. 1971. Zur Verbreitung, Vergesellschaftung und Ökologie der Gefäß-Makrophyten im Fließwassersystem Moosach (Münchner Ebene). Arch. Hydrobiol. 69: 333–365Google Scholar
  37. Kohler A. & Janauer G.A. 1995. Zur Methodik der Untersuchungen von aquatischen Makrophyten in Fließgewässern, pp. 1–22. In: Steinberg C., Bernhardt H. & Klapper H. (eds), Hand-buch Angewandte Limnologie, Ecomed Verlag, Lansberg-Lech.Google Scholar
  38. Lacoul P. & Freedman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environ. Rev. 14: 891–136CrossRefGoogle Scholar
  39. Manolaki P. & Papastergiadou E. 2015. Environmental Factors Influencing Macrophytes Assemblages in a Middle-Sized Mediterranean Stream. River Res. Appl. DOI: 10.1002/rra. 2878.Google Scholar
  40. Marhold K. & Hindák F. 1998. Checklist of non-vascular and vascular plants of Slovakia. Veda, Bratislava, 688 pp.Google Scholar
  41. Medvecká J., Kliment J., Májeková J., Halada Ľ., Zaliberová M., Gojdičová E., Feráková V. & Jarolímek I. 2012. Inventory of alien species of Slovakia. Preslia 84: 257–309Google Scholar
  42. Miklós L. & Hrnčiarová T. 2002. Atlas krajiny Slovenskej republiky. Ministerstvo životného prostredia Slovenskej republiky, Bratislava.Google Scholar
  43. Ministry of Environment of the Slovak Republic 2011. Water Plan of the Slovak Republic — Abbreviated version. 124 pp.Google Scholar
  44. Oťaheľová H. 1996. Elodea nuttallii (Planchon) St. John in Slovakia. Bull. Slov. Bot. Spoločn. 18: 84–85Google Scholar
  45. Oťaheľová H. & Valachovič M. 2002. Effects of the Gabčíkovo hydroelectric-station on the aquatic vegetation of the Danube River (Slovakia). Preslia 74: 323–331Google Scholar
  46. Oťaheľová H. & Valachovič M. 2003. Distribution of macrophytes in different water-bodies (habitats) influenced by the Gabčíkovo hydropower station (Slovakia) — present status. Arch. Hydrobiol. 147(1–2), Large Rivers 14(1–2): 97–115.Google Scholar
  47. Oťaheľová H., Valachovič M. & Hrivnák R. 2007. The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica 37: 290–302CrossRefGoogle Scholar
  48. Papastergiadou E., Stefanidis K., Dorflinger G., Giannouris E., Kostrata K. & Manolaki P. 2016. Exploring biodiversity in riparian corridors of a Mediterranean island: Plant communities and environmental parameters in Cyprus. Plant Biosyst. 150: 91–103CrossRefGoogle Scholar
  49. Sabbatini M.R., Murphy K.J. & Irigoyen J.H. 1998. Vegetation-environment relationships in irrigation channel systems of southern Argentina. Aquat. Bot. 60: 119–133CrossRefGoogle Scholar
  50. Sipos V.K. 2001. Makrophyten-Vegetation und Standorte in eutrophen und humosen Fliessgewässern. Beispiele aus Südschweden und Ungarn. Ber. Inst. Landschafts und Pflanzenökologie, Universität Hohenheim, Stuttgart, 13: 1–185Google Scholar
  51. Sipos V.K., Kohler A., Köder M. & Janauer G. 2003. Macrophyte vegetation of Danube canals in Kiskunság (Hungary). Arch. Hydriobiol. 147(1–2), Large Rivers14(1–2): 143–166.Google Scholar
  52. Sokal R.R. & Rohlf F.J. 1995. Biometry: the Principles and Practice of Statistics in Biological Research. 3rd ed. W.H. Freeman, New York. 887 pp.Google Scholar
  53. Szoszkiewicz K., Kayzer D., Staniszewski R. & Dawson H.F. 2010. Measures of central tendency of aquatic habitat parameters: Application to river macrophyte communities. Pol. J. Ecol. 58: 693–706Google Scholar
  54. Szoszkiewicz K., Ciecierska H., Kolada A., Schneider S.C., Szwabinska M. & Ruszczynska J. 2014. Parameters structuring macrophyte communities in rivers and lakes — results from a case study in North-Central Poland. Knowl. Manag. Aquatic Ecosyst. 415, 08.CrossRefGoogle Scholar
  55. StatSoft Inc. 2001. STATISTICA for Windows (Computer program Manual) Tulsa, OK: StatSoft Inc., 2300 Tulsa, Scholar
  56. ter Braak C.J.F. & Šmilauer P. 2012. CANOCO reference manual and user’s guide: software for ordination (version 5.0). Microcomputer Power. Ithaca, NY, 496 pp.Google Scholar
  57. Williams P., Whitfield M., Biggs J., Bray S., Fox G., Nicolet P. & Sear D. 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115: 329–341CrossRefGoogle Scholar
  58. Willby N.J., Abernethy V.J. & Demars B.O.L. 2000. Attributebased classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biol. 43: 43–74CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2016

Authors and Affiliations

  1. 1.Water Research InstituteBratislavaSlovakia
  2. 2.Institute of BotanySlovak Academy of SciencesBratislavaSlovakia

Personalised recommendations