, Volume 70, Issue 12, pp 1575–1585 | Cite as

Biochemical, anatomical and molecular level changes in cucumber (Cucumis sativus) seedlings exposed to copper oxide nanoparticles

  • Prakash M. Gopalakrishnan NairEmail author
  • Ill Min Chung
Section Cellular and Molecular Biology


The effect of copper oxide nanoparticles (CuONPs) at the biochemical, anatomical and molecular level was investigated in cucumber (Cucumis sativus L.) seedlings. The seedlings were grown in semi-solid half strength Murashige and Skoog medium supplemented with 0, 50, 100, 200, 400 and 500 mg/L of CuONPs for fifteen days under controlled growth chamber conditions. The results showed that exposure to all concentrations of CuONPs resulted in significant reduction in shoot and root growth and biomass. A concentration-dependant increase in reactive oxygen species (ROS) generation, malondialdehyde production, lignin content and decline in mitochondrial membrane potential were observed. Cross-sections of stem showed anatomical changes, viz. an increase in xylogenesis in CuONPs exposed plants. Significant modulation in the expression of genes related to oxidative stress and lignin biosynthesis, i.e. catalase, ascorbate peroxidase, phenylalanine ammonia lyase, cinnamate 4-hydroxylase, anionic and cationic peroxidases were observed in shoots and roots as a result of CuONPs exposure. Taken together, exposure to CuONPs has resulted in excess ROS generation, lignification and growth suppression in Cucumis sativus seedlings.

Key words

Cucumis sativus; copper oxide nanoparticles oxidative stress lipid peroxidation lignification 



ascorbate peroxidase




copper oxide nanoparticles


cinnamate 4-hydroxylase






dry weight


engineered nanoparticles


fresh weight


mitochondrial membrane potential


3′-(p-hydroxyphenyl) fluorescein


Murashige and Skoog


nitroblue tetrazolium


phenylalanine ammonia lyase




reactive oxygen species


tetramethylrhodamine methyl ester


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldoni A., Von Pinho E.V.R., Fernandes J.S., Abreu V.M. & Carvalho M.L. 2013. Gene expression in the lignin biosynthesis pathway during soybean seed development. Genet. Mol. Res. 12: 2618–2624.PubMedCrossRefGoogle Scholar
  2. Benson D.A., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2014. GenBank. Nucleic Acids Res 42: D32–D37.PubMedCrossRefGoogle Scholar
  3. Bowler C., Slooten L., Vandenbranden S., De Rycke R., Botterman J., Sybesma C. VanMontagu M. & Inze D. 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 10: 1723–1732.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bowler C., Van Montagu M. & Inze D. 1992. Superoxide dismutase and stress tolerance. Annu Rev. Plant. Physiol. Plant Mol. Biol. 43: 83–116.CrossRefGoogle Scholar
  5. Brar S.K., Verma M., Tyagi R.D. & Surampalli R.Y. 2010. Engineered nanoparticles in waste water and waste water sludge-evidence and impacts. Waste Management 30: 504–520.PubMedCrossRefGoogle Scholar
  6. Christensen J.H., Bauw G., Welinder K.G., Van Montagu M. & Boerjan W. 1998. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol. 118: 125–135.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Clarkson D.T. & Lüttge U. 1989. Mineral nutrition: divalent cations, transport and compartumentation. Progr. Bot. 51: 93–100.Google Scholar
  8. Cornells G., Hund-Rinke K., Kuhlbuschc T., Brinke K.V & Nickel C. 2014. Fate and bioavailability of engineered nanoparticles in soils: a review. Crit. Rev. Environ. Sci. Technol. 44: 2720–2764.CrossRefGoogle Scholar
  9. Das M., Saxena N. & Dwivedi P.D. 2009. Emerging trends of nanoparticles application in food technology: safety paradigms. Nanotoxicol. 3: 10–18.CrossRefGoogle Scholar
  10. Dietz K.J. & Herth S. 2011. Plant nanotoxicology. Trends Plant Sci. 16: 582–589.PubMedCrossRefGoogle Scholar
  11. Faisal M., Saquib Q., Alatar A.A., Al-Khedhairy A.A., Hegazy A.K. & Musarrat J. 2013. Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J. Hazardous Mat. 250-251: 318–332.CrossRefGoogle Scholar
  12. Feigl G., Kumar D., Lehotai N., Tugyi N., Molnár A., Ördög A., Szepesi A., Gémes K., Laskay G., Erdei L. & Kolbert Z. 2013. Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rape seed (Brassica napus L.) to copper stress. Ecotoxicol. Environ. Saf. 94: 179–189.PubMedCrossRefGoogle Scholar
  13. Finger-Teixeira A., Ferrarese M.L.L., Soares A.R., Silva D. & Ferrarese-Filhon O. 2010. Cadmium-induced lignification restricts soybean root growth. Ecotoxicol. Environ. Saf. 73: 1959–1964.PubMedCrossRefGoogle Scholar
  14. Fryer M.J., Oxborough K., Mullineaux P.M. & Baker N.R. 2002. Imaging of photo-oxidative stress responses in leaves. J. Exp. Bot. 53: 1249–1254.PubMedGoogle Scholar
  15. Gardea-Torresdey J.L., Rico C.M. & White J.C. 2014. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ. Sci. Technol. 48: 2526–2540.PubMedCrossRefGoogle Scholar
  16. Heath R.L & Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189–198.PubMedCrossRefGoogle Scholar
  17. Hernandez-Viezcas J.A., Castillo-Michel H., Andrews J.C, Cotte M., Rico C., Peralta-Videa J.R., Ge Y., Priester J.H., Holden P.A. & Gardea-Torresdey J.L. 2013. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7: 1415–1423.PubMedCrossRefGoogle Scholar
  18. Hohl M.H., Greinev H. & Schopfer P. 1995. The cryptic growth response of maize coleoptile and its relationship to H2O2 dependent cell wall stiffening. Physiol. Plant. 94: 491–498.CrossRefGoogle Scholar
  19. Jana S. & Choudhuri M.A. 1982. Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat. Bot. 12: 345–354.CrossRefGoogle Scholar
  20. Kolbert Z.S., Peto A., Lehotai N., Feigl C., Ördög A. & Erdei L. 2012. In vivo and in vitro studies on fluorophore-specificity. Acta Biol. Szegediensis 56: 37–41.Google Scholar
  21. Kováčik J., Grúz J., Klejdus B., Štork F., Marchiosid R. & Ferrarese-Filhod O. 2010. Lignification and related parameters in copper exposed Matricaria chamomilla roots: role of H2O2 and NO in this process. Plant Sci. 179: 383–389.CrossRefGoogle Scholar
  22. Kwasniewskia M., Chwialkowska K., Kwasniewska J., Kusak J., Siwinski K. & Szarejko I. 2013. Accumulation of peroxidase-related reactive oxygen species in trichoblasts correlates with root hair initiation in barley. J. Plant Physiol. 170: 185—195.Google Scholar
  23. Kwon Y.I., Abe K., Endo M., Osakabe K., Ohtsuki N., Nishizawa-Yoko A., Tagiri A., Saika H. & Toki S. 2013. DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC Plant Biol. 13: 62–75.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lee S., Hyein C., Kim S. & Lee I.S. 2013. The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum. Water Air Soil Poll. 224: 1688—1679.Google Scholar
  25. Lee W., An Y., Yoon H. & Kweon H. 2008. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Trüicum, aestivum): plant agar teat for water-insoluble nanoparticles. Environ. Toxicol. Chem. 27: 1915–1921.PubMedCrossRefGoogle Scholar
  26. Lequeux H., Hermans C., Lutts S. & Nathalie V. 2010. Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol. Biochem. 48: 673–682.PubMedCrossRefGoogle Scholar
  27. Libik M., Konieczny R., Pater B., Slesak I. & Miszalski, Z., 2005. Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. Plant Cell Rep. 23: 834–841.PubMedCrossRefGoogle Scholar
  28. Lin C.C., Chen L.M. & Liu Z.H. 2005. Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci. 168: 855–861.CrossRefGoogle Scholar
  29. Mäder M. & Füssl R. 1982. Role of peroxidase in lignification of tobacco cells: regulation by phenolic compounds. Plant Physiol. 70: 1132–1134.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Melegari S.P., Perreault F., Popovic R.H.R.C. & Radovan Mafias W.G. 2013. Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat. Toxicol. 43: 431–440.CrossRefGoogle Scholar
  31. Passardi F., Cosio C., Penel C. & Dunand C. 2005. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep. 24: 255–265.PubMedCrossRefGoogle Scholar
  32. Peng C., Zhang H., Fang H., Xu C., Huang H., Wang Y., Sun L., Yuan X., Chen Y. & Shi J. 2015. Natural organic matter-induced alleviation of the phytotoxicity to rice (Oryzo, sativa L.) caused by copper oxide nanoparticles. Environ. Toxicol. Chem. 34: 1996–2003.PubMedCrossRefGoogle Scholar
  33. Polle A., Otter T. & Scifert F. 1994. Apoplastic peroxidase and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106: 53–60.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Puertas-Mejia M.A., Ruiz-Diez B. & Fernandez-Pascual M. 2010. Effect of cadmium ion excess over cell structure and functioning of Zea mays and Hodeum, vulgare. Biochem. Syst. Ecol. 38: 285–291.CrossRefGoogle Scholar
  35. Raes J., Rohde A., Christensen J.H., Van de Peer Y. & Boerjan W. 2003. Genome-wide characterization of the lignification tool box in Arabidopsis. Plant Physiol. 133: 1051–1071.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Raven J.A., Evans M.C.W. & Korb R.E. 1999. The role of trace metals in photo-synthetic electron transport on O2- evolving organisms. Photosynth. Res. 60: 111–149.CrossRefGoogle Scholar
  37. Rickerby D.G. & Morrison M. 2007. Nanotechnology and the environment: a European perspective. Sci. Technol. Adv. Mater. 8: 19–24.CrossRefGoogle Scholar
  38. Rico C.M., Majumdar S., Duarte-Gardea M., Peralta-Videa J.R. & Gardea-Torresdey J.L. 2011. Interaction of nanoparticles with edible plants and their possible Implications in the food chain. J. Agric. Food Chem. 27: 3485–3498.CrossRefGoogle Scholar
  39. Rogers L.A., Dubos C., Surman C., Willment J., Cullis I.F., Mansfield S.D. & Campbell M.M. 2005. Comparison of lignin deposition in three ectopic lignification mutants. New Phytol. 168: 123–140.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Sandmann G. & Boger P. 1980. Copper-mediated lipid peroxidation processes in photosynthetic membranes. Plant Physiol. 66: 797–800.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Schopfer P. 1996. Hydrogen peroxide mediated cell wall stiffening in vitro maize coleoptile. Planta 199: 43–49.CrossRefGoogle Scholar
  42. Shaw A.K., Ghosh, S., Kalaji, H.M., Bosa, K., Brestic, M., Zivcak, M. & Hossain, Z. 2014. Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum, vulgare L.). Environ. Exp. Bot. 102: 37–47.CrossRefGoogle Scholar
  43. Shaw A.K. & Hossain Z. 2013. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93: 906—915.Google Scholar
  44. Shi J., Peng C., Yang Y., Yang J., Zhang H., Yuan X., Chen Y. & Hu T. 2014. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elshotzia spendens. Nanotoxicol. 8: 179–188.CrossRefGoogle Scholar
  45. Stander L. & Theodore L. 2011. Environmental implications of nanotechnology-an update. Int. J. Environ. Res. Public Health 8: 470–479.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Thordal-Christensen H., Zhang Z., Wei Y. & Collinge D.B. 1997. Subcellular localization of H2O2 in plants, H2O2 accumulation in papillae and hypersensitive response during barley-powdery mildew interaction. Plant J. 11: 1187–1194.CrossRefGoogle Scholar
  47. USEPA (U. S. Environmental Protection Agency). 1996. Ecological Effects Test Guide-lines: Seed Germination/Root Elongation Toxicity Test, OPPTS850.4200. EPA, Washington.Google Scholar
  48. Wang Q., Ma X., Zhang W., Pei H. & Chen Y. 2012a. The impact of cerium oxide nanoparticles on tomato (Solanum, lycopersicum L.) and its implications on food safety. Metallomics 4: 1105–1112.PubMedCrossRefGoogle Scholar
  49. Wang W., Vinocur B., Shoseyov O. & Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244–252.PubMedCrossRefGoogle Scholar
  50. Wang Z., Xie X., Zhao J., Liu X., Feng W., White J.C. & Xing B. 2012b. Xylem and phloem based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 46: 4434–4441.PubMedCrossRefGoogle Scholar
  51. Wu S.G., Huang L., Head J., Chen D.R., Kong I.C. & Tang Y.J. 2012. Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J. Pet. Environ. Biotech. 3: 126.Google Scholar
  52. Yamamoto Y., Kobayashi Y. & Matsumoto H. 2001. Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol. 125: 199–208.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Yamamoto Y., Kobayashi Y., Devi S.R., Rikiishi S. & Matsumoto H. 2002. Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiol. 128: 163–172.Google Scholar
  54. Zhao L., Peng B., Hernandez-Viezcas J.A., Rico C., Sun Y., Peralta-Videa J.R., Tang X., Niu G., Jin L., Varela-Ramirez A., Zhang J. & Gardea-Torresdey J.L. 2012. Stress response and tolerance of Zea mays to CeO2 nanoparticles: Cross talk among H2O2, heat shock protein and lipid peroxidation. ACS Nano 27: 9615–9622.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • Prakash M. Gopalakrishnan Nair
    • 1
    Email author
  • Ill Min Chung
    • 1
  1. 1.Department of Applied Biosciences, College of Life and Environmental SciencesKonkuk UniversitySeoulSouth Korea

Personalised recommendations