Advertisement

Biologia

, Volume 70, Issue 12, pp 1621–1630 | Cite as

Aquatic insects of a lowland rainforest in Papua New Guinea: assemblage structure in relation to habitat type

  • Jan KleckaEmail author
Section Zoology

Abstract

Papua New Guinea is one of the most valuable tropical regions but ecological research of its freshwater in¬vertebrates has been lacking. The goal of this paper is to evaluate the species richness, diversity and structure of aquatic insect assemblages in different habitats in the Wanang River catchment in a well-preserved lowland rainforest. Assemblage structure was studied on two spatial scales — in different habitats (river, streams and stagnant pools) and in three mesohabitats in the river (slow and fast sections and submerged wood). The results show that headwater streams had the highest morphospecies diversity, while the river had the highest insect abundance. Slow and fast sections of the river differed both in terms of insect abundance and diversity. Furthermore, a number of unique wood-associated species was found on submerged wood. The most notable feature of the assemblage structure was scarcity of shredders and dominance of predators. However, predatory beetles, bugs and dragonfly larvae exhibited contrasting habitat preferences. This study shows that Papua New Guinean lowland rainforests host diverse and distinctly structured freshwater insect assemblages.

Key words

community structure biodiversity aquatic insects functional feeding groups habitat selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abell R., Thieme M.L., Revenga C., et al. 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58: 403–414. DOI:  https://doi.org/10.1641/B580507CrossRefGoogle Scholar
  2. Angradi T.R. 1996. Inter-habitat variation in benthic community structure, function, and organic matter storage in 3 Appalachian headwater streams. J. N. Am. Benthol. Soc. 15: 42–63. DOI:  https://doi.org/10.2307/1467432CrossRefGoogle Scholar
  3. Balian E.V., Segers H., Lévêque C. & Martens K. 2008a. An introduction to the Freshwater Animal Diversity Assessment (FADA) project. Hydrobiologia 595: 3–8. DOI:  https://doi.org/10.1007/978-1-4020-8259-71CrossRefGoogle Scholar
  4. Balian E.V., Segers H., Lévêque C. & Martens K. 2008b. The Freshwater Animal Diversity Assessment: An overview of the results. Hydrobiologia 595: 627–637. DOI:  https://doi.org/10.1007/sl0750-007-9246-3CrossRefGoogle Scholar
  5. Barba B., Larranaga A., Otermin A., Basaguren A. & Pozo J. 2010. The effect of sieve mesh size on the description of macroinvertebrate communities. Limnetica 29: 211–220.Google Scholar
  6. Barber-James H.M., Gattolliat J.-L., Sartori M. & Hubbard M.D. 2008. Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater. Hydrobiologia 595: 339–350. DOI:  https://doi.org/10.1007/978-1-4020-8259-737CrossRefGoogle Scholar
  7. Bates D., Maechler M., Bolker B. & Walker S. 2014a. Ime4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7, https://doi.org/CRAN.R-project.org/package=lme4 (accessed 01.03.2015)Google Scholar
  8. Bates D., Mächler M., Bolker B. & Walker S. 2014b. Fitting linear mixed-effects models using lme4. https://doi.org/arxiv.org/abs/1406.5823 (accessed 01.03.2015)Google Scholar
  9. Boyero L., Ramírez A., Dudgeon D. & Pearson R.G. 2009. Are tropical streams really different? J. N. Am. Benthol. Soc. 28: 397–403. DOI:  https://doi.org/10.1899/08-146.1CrossRefGoogle Scholar
  10. Brown A.V. & Brussock P.P. 1991. Comparison of benthic invertebrates between riffles and pools. Hydrobiologia 220: 99–108. DOI:  https://doi.org/10.1007/BF00006542CrossRefGoogle Scholar
  11. Chao A., Chazdon R.L., Colwell R.K. & Shen T.J. 2005. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8: 148–159. DOI:  https://doi.org/10.1111/j.1461-0248.2004.00707.xCrossRefGoogle Scholar
  12. Cheshire K., Boyero L. & Pearson R.G. 2005. Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biol. 50: 748–769. DOI:  https://doi.org/10.1111/j.1365-2427.2005.01355.xCrossRefGoogle Scholar
  13. Colwell R.K. 2006. EstimateS: Statistical estimation of species richness and shared species from samples. Version 7.5. https://doi.org/purl.oclc.org/estimates.7.5 ed. https://doi.org/purl.oclc.org/estimates (accessed 01.03.2015)Google Scholar
  14. Moor F.C. & Ivanov V.D. 2008. Global diversity of caddisflies (Trichoptera: Insecta) in freshwater. Hydrobiologia 595: 393–407. DOI:  https://doi.org/10.1007/978-1-4020-8259-741CrossRefGoogle Scholar
  15. Dudgeon D. 1990. Benthic community structure and the effect of rotenone piscicide on invertebrate drift and standing stocks in 2 Papua New Guinean streams. Arch. Hydrobiol. 119: 35–53.Google Scholar
  16. Dudgeon D. 1994. The influence of riparian vegetation on macroinvertebrate community structure and functional organization in 6 New Guinea streams. Hydrobiologia 294: 65–85. DOI:  https://doi.org/10.1007/BF00017627CrossRefGoogle Scholar
  17. Fochetti R. & Tierno de Figueroa J.M. 2008. Global diversity of stoneflies (Plecoptera, Insecta) in freshwater. Hydrobiologia 595: 365–377. DOI:  https://doi.org/10.1007/978-1-4020-8259-739CrossRefGoogle Scholar
  18. Giller P.S. & McNeill S. 1981. Prédation strategies, resource partitioning and habitat selection in Notonecta (Hemiptera/Heteroptera). J. Anim. Ecol. 50: 789–808. DOI:  https://doi.org/10.2307/4137CrossRefGoogle Scholar
  19. Graça M.A.S. 2001. The role of invertebrates on leaf litter decomposition in streams — a review. Int Rev. Ges. Hydrobiol. Hydrogr. 86: 383–393. DOI:  https://doi.org/10.1002/1522-2632(200107)86:4/5<383::AID-IROH383>3.0.CO;2-DCrossRefGoogle Scholar
  20. Holland S.M. 2003. Analytic Rarefaction 1.3. https://doi.org/www.uga.edu/strata/softwareGoogle Scholar
  21. Johansson F. 1991 Foraging modes in an assemblage of odonate larvae — effects of prey and interference. Hydrobiologia 209: 79–87. DOI:  https://doi.org/10.1007/BF00006721CrossRefGoogle Scholar
  22. Johansson F. 1993. Intraguild prédation and cannibalism in odonate larvae: effects of foraging behaviour and Zooplankton availability. Oikos 66: 80–87. DOI:  https://doi.org/10.2307/3545198CrossRefGoogle Scholar
  23. Johnson L.B., Breneman D.H. & Richards C. 2003. Macroinvertebrate community structure and function associated with large wood in low gradient streams. River Res. Appl. 19: 199–218. DOI:  https://doi.org/10.1002/rra.712CrossRefGoogle Scholar
  24. Jung S.W., Nguyen V.V., Nguyen Q.H. & Bae Y.J. 2008. Aquatic insect faunas and communities of a mountain stream in Sapa Highland, northern Vietnam. Limnology 9: 219–229. DOI:  https://doi.org/10.1007/sl0201-008-0250-8CrossRefGoogle Scholar
  25. Klecka J. & Boukal D.S. 2011. Lazy ecologist’s guide to water beetle diversity: which sampling methods are the best? Ecol. Ind. 11: 500–508. DOI:  https://doi.org/10.1016/j.ecolind.2010.07.005CrossRefGoogle Scholar
  26. Klecka J. & Boukal D.S. 2012. Who eats whom in a pool? A comparative study of prey selectivity by predatory aquatic insects. PLOS One 7: e37741. DOI:  https://doi.org/10.1371/journal.pone.0037741PubMedPubMedCentralCrossRefGoogle Scholar
  27. Larson D.J. 1990. Odonate predation as a factor influencing dytiscid beetle distribution and community structure. Quaestiones Entomologicae 26: 151–162.Google Scholar
  28. Lemly A.D. & Hilderbrand R.H. 2000. Influence of large woody debris on stream insect communities and benthic detritus. Hydrobiologia 421: 179–185. DOI:  https://doi.org/10.1023/A:100390413 0002CrossRefGoogle Scholar
  29. Leps J. & Smilauer P. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, UK, 284 pp. ISBN: 9780521891080CrossRefGoogle Scholar
  30. Li A.O.Y. & Dudgeon D. 2009. Shredders: species richness, abundance, and role in litter breakdown in tropical Hong Kong streams. J. N. Am. Benthol. Soc. 28: 167–180. DOI:  https://doi.org/10.1899/08-043.1CrossRefGoogle Scholar
  31. Magurran A.E. 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton, NJ, USA, 179 pp. DOI:  https://doi.org/10.1007/978-94-015-7358-0. ISBN: 978-94-015-7360-3CrossRefGoogle Scholar
  32. McCulloch D.L. 1986. Benthic macroinvertebrate distributions in the riffle-pool communities of two east Texas streams. Hydrobiologia 135: 61–70. DOI:  https://doi.org/10.1007/BF00006459CrossRefGoogle Scholar
  33. McPeek M.A. 1990. Determination of species composition in the Enallagma damselfly assemblages of permanent lakes. Ecology 71: 83–98. DOI:  https://doi.org/10.2307/1940249CrossRefGoogle Scholar
  34. Moog O. (ed.) 2002. Fauna aquatica Austriaca, Edition 2002. Wasserwirtschaftskataster, Bundesministerium für Land- und Forstwirtschaft, Federal Ministry of Agriculture, Forestry, Environment and Water management, Vienna. ISBN: 3-85174-044-0Google Scholar
  35. Novotny V., Basset Y., Miller S.E., Weiblen G.D., Bremer B., Cizek L, & Drozd P. 2002. Low host specificity of herbivorous insects in a tropical forest. Nature 416: 841–844. DOI:  https://doi.org/10.1038/416841aPubMedCrossRefPubMedCentralGoogle Scholar
  36. Pearson R.G. & Boyero L. 2009. Gradients in regional diversity of freshwater taxa. J. N. Am. Benthol. Soc. 28: 504–514. DOI:  https://doi.org/10.1899/08-118.1CrossRefGoogle Scholar
  37. R Core Development Team 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://doi.org/www.R-project.orgGoogle Scholar
  38. Shannon C.E. & Weaver W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL, USA, 144 pp. ISBN: 0-252-72546-8Google Scholar
  39. Simpson E.H. 1949. Measurement of diversity. Nature 163: 688.CrossRefGoogle Scholar
  40. Sircom J. & Walde S.J. 2009. Intraguild interactions and large-scale population patterns. J. N. Am. Benthol. Soc. 28: 649–658. DOI:  https://doi.org/10.1899/08-188.1CrossRefGoogle Scholar
  41. Slobodchikoff C.N. & Parrott J.E. 1977. Seasonal diversity in aquatic insect communities in an all-year stream system. Hydrobiologia 52: 143–151. DOI:  https://doi.org/10.1007/BF00036436CrossRefGoogle Scholar
  42. Stoks R. & McPeek M.A. 2003 Predators and life histories shape Lestes damselfly assemblages along the freshwater habitat gradient. Ecology 84: 1576–1587. DOI:  https://doi.org/10.1890/0012-9658(2003)084[1576:PALHSL]2.0.CO;2CrossRefGoogle Scholar
  43. ter Braak C.J.F. & Smilauer P. 2002. CANOCO for Windows, Version 4.5. Microcomputer Power, Ithaca, New York.Google Scholar
  44. Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R. & Cushing C.E. 1980. River continuum concept. Can. J. Fish. Aquat. Sci. 37: 130–137. DOI:  https://doi.org/10.1139/f80-017CrossRefGoogle Scholar
  45. Vinson M.R. & Hawkins C.P. 2003. Broad-scale geographical patterns in local stream insect genera richness. Ecography 26: 751–767. DOI:  https://doi.org/10.1111/j.0906-7590.2003.03397.xCrossRefGoogle Scholar
  46. Williams W.D. 1980. Australian freshwater life: the invertebrates of Australian inland waters, 2 edn. Macmillan Company of Australia, Melbourne, 321 pp. ISBN-10: 0333298950, ISBN-13: 978-0333298954Google Scholar
  47. Wood D.L. & Sites R.W. 2002. Submerged rootmats: a mesohab-itat harboring a distinct insect community in Ozark streams. J. Freshwater Ecol. 17: 431–440. DOI:  https://doi.org/10.1080/02705060.2002.9663917CrossRefGoogle Scholar
  48. Yee D.A. 2010. Behavior and aquatic plants as factors affecting predation by three species of larval predaceous diving beetles (Coleoptera: Dytiscidae). Hydrobiologia 637: 33—43. DOI:  https://doi.org/10.1007/sl0750-009-9982-7
  49. Yule C.M. 1995. Benthic invertebrate fauna of an aseasonal tropical mountain stream on Bougainville Island, Papua New Guinea. Mar. Freshwater Res. 46: 507–518. DOI:  https://doi.org/10.1071/MF9950507CrossRefGoogle Scholar
  50. Yule C.M. 1996a. Aseasonality of benthic invertebrates in a tropical stream on Bougainville Island, Papua New Guinea. Arch. Hydrobiol. 137: 95–117.Google Scholar
  51. Yule C.M. 1996b. Spatial distribution of the invertebrate fauna of an aseasonal tropical stream on Bougainville Island, Papua New Guinea. Arch. Hydrobiol. 137: 227–249.Google Scholar
  52. Yule C.M. 1996c. Trophic relationships and food webs of the benthic invertebrate fauna of two aseasonal tropical streams on Bougainville Island, Papua New Guinea. J. Trop. Ecol. 12: 517–534. DOI:  https://doi.org/10.1017/S0266467400009755CrossRefGoogle Scholar
  53. Yule C.M., Leong M.Y., Liew K.C., Ratnarajah L., Schmidt K., Wong H.M., Pearson R.G. & Boyero L. 2009. Shredders in Malaysia: abundance and richness are higher in cool upland tropical streams. J. N. Am. Benthol. Soc. 28: 404–415. DOI:  https://doi.org/10.1899/07-161.1CrossRefGoogle Scholar
  54. Yule C.M. & Sen Y.H. (eds) 2004. Freshwater invertebrates of the Malaysian region. Akademi Sains Malaysia, Kuala Lumpur. ISBN: 983-41936-0-2Google Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Laboratory of Integrative EcologyInstitute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic v.v.i.České BudějoviceCzech Republic

Personalised recommendations