Advertisement

Biologia

, Volume 70, Issue 12, pp 1586–1596 | Cite as

Expression of bacterial glutamine synthetase gene in Arabidopsis thaliana increases the plant biomass and level of nitrogen utilization

  • Chenguang ZhuEmail author
  • Guimin Zhang
  • Chunlei Shen
  • Shilin Chen
  • Yuanping Tang
  • Bing Mei
  • Rentao Song
Section Botany

Abstract

Changes in expression of glutamine synthetase (GS) have effect on plant nitrogen metabolism. In order to improve nitrogen use efficiency, several attempts at over-expressing GS II genes in plants have been previously undertaken, however few GSI and III genes are found such application. In this study, two GS I genes were cloned from bacterial strains and were transformed into Arabidopsis thaliana. Expression of the genes was confirmed under both mRNA and protein levels. Phenotypic studies revealed that all transgenic Arabidopsis lines showed enhanced fresh weight (12%) and dry weight (13%) compared with the wild-type plants at two concentrations of nitrate supplies. Further biochemical characterization confirmed that the transgenic lines had higher total nitrogen content (increased by 5–8%), soluble protein concentration (increased by 7–11%), total amino acid content (increased by 4–8%), leaf GS activity (enhanced by 8-14%) and free NO3concentration (increased by 8–16%) compared to wild type Arabidopsis. This work firstly reported that over-expression of bacterial GS I genes in Arabidopsis resulted in improvement of growth phenotype and nitrogen use efficiency (NUE) of plant. The bacterial GS genes could be potentially useful in engineering transgenic plants of high NUE.

Key words

Arabidopsis thaliana glutamine synthetase nitrogen use efficiency transgenic phenotype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bent A. 2006. Arabidopsis thaliana floral dip transformation method. Methods Mol. Biol. 343: 87–104.PubMedGoogle Scholar
  2. Brauer E.K., Rochon A., Bi Y.M., Bozzo G.G., Rothstein S.J. & Shelp B.J. 2011. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase. Physiol. Plant. 141: 361–372.CrossRefGoogle Scholar
  3. Burris R.H. & Roberts G.P. 1993. Biological nitrogen fixation. Annu. Rev. Nutr. 13: 317–335.CrossRefGoogle Scholar
  4. Cai H., Zhou Y., Xiao J., Li X., Zhang Q. & Lian X. 2009. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 28: 527–537.CrossRefGoogle Scholar
  5. Cataldo D.A., Maroon M., Schrader L.E. & Youngs V.L. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6: 71–80.CrossRefGoogle Scholar
  6. Crespo J.L., Garcia-Dominguez M. & Florencio F.J. 1998. Nitrogen control of the glnN gene that codes for GS type III, the only glutamine synthetase in the cyanobacterium Pseudanabaena sp. PCC 6903. Mol. Microbiol. 30: 1101–1112.CrossRefGoogle Scholar
  7. Eckes P., Schmitt P., Daub W. & Wengenmayer F. 1989. Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants. Mol. Gen. Genet. 217: 263–268.CrossRefGoogle Scholar
  8. Fei H., Chaillou S., Hirel B., Mahon J.D. & Vessey J.K. 2003. Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta 216: 467–474.PubMedGoogle Scholar
  9. Fu J., Sampalo R., Gallardo F., Canovas F.M. & Kirby E.G. 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26: 411–418.CrossRefGoogle Scholar
  10. Fuentes S.I., Allen D.J., Ortiz-Lopez A. & Herhandez G. 2001. Overexpression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J. Exp. Bot. 52: 1071–1081.CrossRefGoogle Scholar
  11. Gallardo F., Fu J., Canton F.R., Garcia-Gutierez A., Canovas F.M. & Kirby E.G. 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210: 19–26.CrossRefGoogle Scholar
  12. Garcia-Dominguez M., Reyes J.C. & Florencio F.J. 1997. Purification and characterization of a new type of glutamine synthetase from cyanobacteria. Eur. J. Biochem. 244: 258–264.CrossRefGoogle Scholar
  13. Hao Q.N., Zhou X.A., Sha A.H., Wang C., Zhou R. & Chen S.L. 2011. Identification of genes associated with nitrogenuse efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics 12: 525.CrossRefGoogle Scholar
  14. Jing Z.P., Gallardo F., Pascual M.B., Sampalo R., Romero J., de Navarra A.T. & Canovas F.M. 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164: 137–145.CrossRefGoogle Scholar
  15. Koncz C., Martini N., Mayerhofer R., Koncz-Kalman Z., Körber H., Redei G.P. & Schell J. 1989. High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86: 8467–8671.CrossRefGoogle Scholar
  16. Kozaki A. & Takeba G. 1996. Photorespiration protects C3 plants from photooxidation. Nature 384: 557–560.CrossRefGoogle Scholar
  17. Lincoln C., Britton J.H. & Estelle M. 1990. Growth and development of the axrl mutants of Arabidopsis. Plant Cell 2: 1071–1080.PubMedPubMedCentralGoogle Scholar
  18. Lynch J.M. & Barbano D.M. 1999. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J. AOAC Int. 82: 1389–1398.PubMedGoogle Scholar
  19. Man H.M., Boriel R., El-Khatib R. & Kirby E.G. 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167: 31–39.CrossRefGoogle Scholar
  20. Martin A., Lee J., Kichey T., Gerentes D., Zivy M., Tatout C., Dubois F., Balliau T., Valot B., Davanture M., Tercé-Laforgue T., Quilleré I., Coque M., Gallais A., Gonzalez-Moro M.B., Bethencourt L., Habash D.Z., Lea P.J., Char-cosset A., Perez P., Murigneux A., Sakakibara H., Edwards K.J. & Hirel B. 2006. Two cytosolic glutamine synthetase iso-forms of maize are specifically involved in the control of grain production. Plant Cell 18: 3252–3274.CrossRefGoogle Scholar
  21. McAllister C.H., Beatty P.H. & Good A.G. 2012. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol. J. 10: 1011–1025.CrossRefGoogle Scholar
  22. Melo P.M., Lima L.M., Santos I.M., Carvalho H.G. & Cullimore J.V. 2003. Expression of the plastid-located glutamine synthetase of Medicago truncatula: accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Plant Physiol. 132: 390–399.CrossRefGoogle Scholar
  23. Mérida A., Flores E. & Florencio F.J. 1992. Regulation of Anabaena sp. strain PCC 7120 glutamine synthetase activity in a SynechocysfÀs sp. strain PCC 6803 derivative strain bearing the Anabaena glnA gene and a mutated host glnA gene. J. Bacteriol. 174: 650–654.CrossRefGoogle Scholar
  24. Miao G.H., Hirel B., Marsolier M.C., Ridge R.W. & Verma D.P. 1991. Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Plant Cell 3: 11–22.PubMedPubMedCentralGoogle Scholar
  25. Miflin B.J. & Habash D.Z. 2002. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot. 53: 979–987.CrossRefGoogle Scholar
  26. Migge A., Carrayol E., Hirel B. & Becker T.W. 2000. Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings. Planta 210: 252–260.CrossRefGoogle Scholar
  27. Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.CrossRefGoogle Scholar
  28. O’Neal D. & Joy K.W. 1973. Glutamine synthetase of pea leaves: purification, stabilization and pH optima. Arch. Biochem. Biophys. 159: 113–122.CrossRefGoogle Scholar
  29. Oliveira I.C., Brears T., Knight T.J., Clark A. & Coruzzi G.M. 2002. Overexpression of cytosolic glutamine synthetase: relation to nitrogen, light and photorespiration. Plant Physiol. 129: 1170–1180.CrossRefGoogle Scholar
  30. Ortega J.L., Temple S.J., Bagga S., Ghoshroy S. & Sengupta-Gopalan C. 2004. Biochemical and molecular characterization of transgenic Lotus japonicus plants constitutively over-expressing a cytosolic glutamine synthetase gene. Planta 219: 807–818CrossRefGoogle Scholar
  31. Ortega J.L., Temple S.J. & Sengupta-Gopalan C. 2001. Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol. 126: 109–121.CrossRefGoogle Scholar
  32. Rosen H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67: 10–15.CrossRefGoogle Scholar
  33. Sambrook J. & Russell D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, USA.Google Scholar
  34. Suárez R., Márquez J., Shishkova S. & Hernández G. 2003. Over-expression of alfalfa cytosolic glutamine synthetase in nodules and flowers of transgenic Lotus japonicus plants. Physiol. Plant. 117: 326–336.CrossRefGoogle Scholar
  35. Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.CrossRefGoogle Scholar
  36. Valentine R.C., Shapiro B.M. & Stadtman E.R. 1968. Regulation of glutamine synthetase, XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7: 2143–2152.CrossRefGoogle Scholar
  37. Wen Z.T., Peng L. & Morrison M. 2003. The glutamine synthetase of Prevotella bryantii B14 is a family III enzyme (GlnN) and glutamine supports growth of mutants lacking glutamate dehydrogenase activity. FEMS Microbiol. Lett. 229: 15–21CrossRefGoogle Scholar
  38. Yamashita M.M., Almassy R.J., Janson C.A., Cascio D. & Eisenberg D. 1989. Refined atomic model of glutamine synthetase at 3.5 Å resolution. J. Biol. Chem. 264: 17681–17690.PubMedGoogle Scholar
  39. Zhu C., Fan Q., Wang W., Shen C., Meng X., Tang Y., Mei B., Xu Z. & Song R. 2014. Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana. Gene 536: 407–415.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • Chenguang Zhu
    • 1
    Email author
  • Guimin Zhang
    • 1
  • Chunlei Shen
    • 1
  • Shilin Chen
    • 1
  • Yuanping Tang
    • 1
  • Bing Mei
    • 1
  • Rentao Song
    • 1
  1. 1.Shanghai Key Laboratory of Bio-Energy Crops, School of Life SciencesShanghai UniversityShanghaiChina

Personalised recommendations