, Volume 70, Issue 8, pp 1026–1032 | Cite as

Transcriptome analysis for identification of indigo biosynthesis pathway genes in Polygonum tinctorium

  • Yoshiko Minami
  • Bijaya Ketan Sarangi
  • Sanjog Tarachand ThulEmail author


Indigo is the most important blue dye for textile dyeing and is biosynthesized in Polygonum tinctorium. Some biochemical studies related to biosynthesis are available. However, genomic and transcriptome studies have not received sufficient attention. Here, we report de novo assembly of transcriptome datasets and its comprehensive analysis. A total of 60,395 unigenes were annotated using BLAST search against the different databases. At least 23,721 unigenes mapped onto different pathways using KEGG database. We found that 3,323 genes are involved in biosynthesis of secondary metabolites, 117 phenylalanine, tyrosine and tryptophan biosynthesis and 147 tryptophan metabolisms. Apart from this, indigo biosynthesis pathway genes viz., dioxygenase, monooxygenase, and glucosyltransferase have also been identified. Fourteen genes encoding cytochrome P450 monooxygenase, 26 glucoside dioxygenase, 9 UDP-glucose D-glucosyltransferase and 52 were β-D-glucosidase. These findings provide a foundation for further analysis of this pathway with potential to enhance the synthesis of indican in P. tinctorium.

Key words

unigenes indican cytochrome P450 monooxygenase UDP-glucosyltransferase 



clusters of orthologous group


gene ontology


Kyoto Encyclopedia of Genes and Genomes


non-redundant protein database


non-redundant nucleotide database


uridine diphosphate glucose


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11756_2015_70081026_MOESM1_ESM.pdf (68 kb)
Transcriptome analysis for identification of indigo biosynthesis pathway genes in Polygonum tinctorium


  1. Conesa A., Gotz S., GarrciaGomez M., Terol J., Talon M. & Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676.CrossRefGoogle Scholar
  2. Ensley B.D., Ratzkin B.J., Osslund T.D., Simon M.J., Wackett L.P. & Gibson D.T. 1983. Expression of naphthalene oxidation genes in Escherichio, coli results in the biosynthesis of indigo. Science 222: 167–169.CrossRefGoogle Scholar
  3. Epstein E., Nabors M.W. & Stowe B.B. 1967. Origin of indigo of woad. Nature 216: 547–549.CrossRefGoogle Scholar
  4. Garg R., Patel R.K., Tyagi A.K. & Jain M. 2011. De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res. 18: 53–63.CrossRefGoogle Scholar
  5. Grabherr M.G., Haas B.J., Yassour M., Levin J.Z., Thompson D.A., Amit I., Adiconis X., Fan L., Raychowdhury R., Zeng Q., Chen Z., Mauceli E., Hacohen N., Gnirke A., Rhind N., Palma F., Birren B.W., Nusbaum C., LindbladToh K., Friedman N. & Regev A. 2011. Fulllength transcriptome assembly from RNASeq data without a reference genome. Nature Biotechnol. 29: 644–652.CrossRefGoogle Scholar
  6. Kanehisa M., Araki M., Goto S., Hattori M., Hirakawa M., Itoh M., Katayama T., Kawashima S., Okuda S., Tokimatsu T. & Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36: D480-D484.Google Scholar
  7. Kim J.Y., Lee J.Y., Shin Y. & Kim G.J. 2010. Characterization of an indicanthydrolyzing enzyme from Sinorhizobium, meliloti. Process Biochem. 45: 892–896.CrossRefGoogle Scholar
  8. Kudapa H., Bharti A.K., Cannon S.B., Farmer A.D., Mulaosmanovic B., Kramer R., Bohra A., Weeks N.T., Crow J.A., Tuteja R., Shah T., Dutta S., Gupta D.K., Singh A., Gaikwad K., Sharma T.R., May G.D., Singh N.K. & Varshney R.K. 2012. A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L.) using Sanger and secondgeneration sequencing platforms. Mol. Plant. 5: 1020–1028.CrossRefGoogle Scholar
  9. Lee C.Y. & Kim W.J. 1990. Production of natural colorants by plant cell biotechnology, pp. 81-85. In: Natural Spices and Pigments (in Korean), Hyangmoon Publishing Co., Seoul, Korea.Google Scholar
  10. Marcinek H., Weyler W., DeusNeumann B. & Zenk M.H. 2000. IndoxylUDPGglucosyltransferase from Baphicacanthus cusia. Phytochemistry 53: 201–207.CrossRefGoogle Scholar
  11. Maugard T., Enaud E., Sayette A.L., Choisy P. & Legoy M.D. 2002. βGlucosidase catalysed hydrolysis of indican from leaves of Polygonum tinctorium. Biotechnol. Progr. 18: 1104–1108.Google Scholar
  12. Minami Y., Kanafuji T. & Miura K. 1996. Puri fication and characterization of a βglucosidase from Polygonum, tinctorium, which catalyzes preferentially the hydrolysis of indican. Biosci. Biotech. Biochem. 60: 147–149.CrossRefGoogle Scholar
  13. Minami Y., Nishimura O., HaraNishimura I., Nishimura M. & Matsubara H. 2000. Tissue and intracellular localization of indican and the puri fication and characterization of indican synthase from indigo plants. Plant Cell Physiol. 41: 218–225.CrossRefGoogle Scholar
  14. Minami Y., Shigeta Y., Tokumoto U., Tanaka Y., YonekuraSakakibara K. & Ohoka H. 1999. Cloning, sequencing, characterization, and expression of a βglucosidase cDNA from the indigo plant. Plant Sci. 142: 219–226.CrossRefGoogle Scholar
  15. Minami Y., Takao H., Kanafuji T., Miura K., Kondo M., HaraNishimura I., Nishimura M. & Matsubara, H. 1997. βGlucosidase in the indigo plant: intracellular localization and tissue speci fic expression in leaves. Plant Cell Physiol. 38: 1069–1074.CrossRefGoogle Scholar
  16. Peng H. & Zhang J. 2009. Commercial highthroughput sequencing and its applications in DNA analysis. Biologia 64: 20–26.CrossRefGoogle Scholar
  17. Schullehner K., Dick R., Vitzthum F., Schwab W., Brandt W., Frey M. & Gierl A. 2008. Benzoxazinoid biosynthesis in dicot plants. Phytochemistry 69: 2668–2677.CrossRefGoogle Scholar
  18. Shin Y., Yoo D.I. & Kim K. 2012. Process balance of natural indigo production based on traditional Niram method. Textile Coloration and Finishing 24: 253–259.CrossRefGoogle Scholar
  19. Song K.S., Shim J.Y., Jung D.S. & Kim S.U. 2011. Origin of oxygen in indoxylderivatives of Polygonum tinctorium L. as probed by 18O2 feeding. J. Korean Soc. Appl. Biol. Chem. 54: 340–344.CrossRefGoogle Scholar
  20. Stoker K.G., Cooke D.T. & Hill D.J. 1998. An improved method for the largescale processing of woad (Isatis tinctoria) for possible commercial production of woad indigo. J. Agric. Eng. Res. 7: 315–320.CrossRefGoogle Scholar
  21. Tatusov R.L., Galperin M.Y., Natale D.A. & Koonin E.V. 2000. The COG database: a tool for genomescale analysis of protein functions and evolution. Nucleic Acids Res. 28: 33–36.CrossRefGoogle Scholar
  22. Thudi M., Li Y., Jackson S.A., May G.D. & Varshney R.K. 2012. Current stateofart of sequencing technologies for plant genomic research. Brief. Funct. Genomics 11: 3–11.CrossRefGoogle Scholar
  23. TroncosoPonce M.A., Kilaru A., Cao X., Durrett T.P., Fan J., Jensen J.K., Thrower N.A., Pauly M., Wilkerson C. & Ohlrogge J.B. 2011. Comparative deep transcriptional pro filing of four developing oilseeds. Plant J. 68: 1014–1027.CrossRefGoogle Scholar
  24. Ye J., Fang L., Zheng H.K., Zhang Y., Chen J., Zhang Z., Wang J., Li S., Li R., Bolund L. & Wang J. 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 34: W293–W297.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • Yoshiko Minami
    • 1
  • Bijaya Ketan Sarangi
    • 2
  • Sanjog Tarachand Thul
    • 2
    Email author
  1. 1.Department of BiochemistryOkayama University of ScienceJapan
  2. 2.Environmental Biotechnology DivisionCSIR - National Environmental Engineering Research InstituteNagpurIndia

Personalised recommendations