Advertisement

Biologia

, Volume 70, Issue 8, pp 1019–1025 | Cite as

Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana

  • José L. RodríguezEmail author
  • Juana G. De Diego
  • Francisco D. Rodríguez
  • Emilio Cervantes
Article

Abstract

Mitochondrial morphology and evolution have been observed during seed germination and early seedling development in Arabidopsis thaliana line 43a9 (ecotype Columbia) expressing green fluorescent protein in these organelles. Fluorescence, confocal and electronic microscopy images reveal that mitochondrial development goes through different stages, and that the organelle structure varies with cell types during these processes. Mitochondria develop from larger, isodiametric structures pre-existent in the dry seed called promitochondria. After germination, variations in mitochondrial morphology occur synchronously with cell differentiation and cell division in the course of early root development. Some promitochondria develop into intermediate structures resembling the syncytial organelles. These structures have been described in certain plants under hypoxia as intermediates for the formation of mature mitochondria. On the other hand, other promitochondria temporarily remain in the cells of the root apex.

Key words

Arabidopsis confocal microscopy germination Mitotracker promitochondria 

Abbreviations

CycB1

cyclin-dependent protein kinase B1

GFP

green fluorescent protein

TEM

transmission electron microscope

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11756_2015_70081019_MOESM1_ESM.pdf (736 kb)
Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana

References

  1. Attucci S., Carde J.P., Raymond P., Saint-Gès V., Spiteri A. & Pradet A. 1991. Oxidative phosphorylation by mitochondria extracted from dry sunflower seeds. Plant Physiol. 95: 390–398.CrossRefGoogle Scholar
  2. Barrôco R.M., Van Poucke K., Bergervoet J.H.W., De Veylder L., Groot S.P.C., Inzé D. & Engler G. 2005. The role of the cell cycle machinery in resumption of postembryonic development. Plant Physiol. 137: 127–140.CrossRefGoogle Scholar
  3. Bewley J.D. 1997. Seed germination and dormancy. Plant Cell 9: 1055–1066.CrossRefGoogle Scholar
  4. Bewley J.D. & Black M. 1994. Seeds: Physiology of Development and Germination, Plenum Press, New York, NY.CrossRefGoogle Scholar
  5. Carrie C., Murcha M.W., Giraud E., Ng S., Zhang M.F., Narsai R. & Whelan J. 2013. How do plants make mitochondria? Planta 237: 429–439.CrossRefGoogle Scholar
  6. Cervantes E., Javier Martín J., Ardanuy R., de Diego J.G. & Tocino Á. 2010. Modeling the Arabidopsis seed shape by a cardioid: efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants. J. Plant Physiol. 167: 408–410.CrossRefGoogle Scholar
  7. Colón-Carmona A., You R., Haimovitch-Gal T. & Doerner P. 1999. Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein. Plant J. 20: 503–508.CrossRefGoogle Scholar
  8. de Diego J.G., David Rodriguez F., Rodríguez Lorenzo J.L. & Cervantes E. 2007. The prohibitin genes in Arabidopsis thaliana: expression in seeds, hormonal regulation and possible role in cell cycle control during seed germination. J. Plant Physiol. 164: 371–373.CrossRefGoogle Scholar
  9. de Diego J.G., Rodríguez F.D., Rodríguez J.L., Cervantes E. & P.G. 2006. cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences. J. Plant Physiol. 163: 452–462.CrossRefGoogle Scholar
  10. Gallardo K., Job C., Groot S.P.C., Puype M., Demol H., Vandekerckhove J. & Job D. 2002. Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol. Plant 116: 238–247.CrossRefGoogle Scholar
  11. Hiramatsu T., Misumi O., Kuroiwa T. & Nakamura S. 2006. Morphological changes in mitochondrial and chloroplast nucleoids and mitochondria during the Chlamydomonas reinhardtii (Chlorophyceae) cell cycle. J. Phycol. 42: 1048–1058.CrossRefGoogle Scholar
  12. Howell K.A., Millar A.H. & Whelan J. 2006. Ordered assembly of mitochondria during rice germination begins with promito-chondrial structures rich in components of the protein import apparatus. Plant Mol. Biol. 60: 201–223.CrossRefGoogle Scholar
  13. Howell K.A., Millar A.H. & Whelan J. 2007. Building the powerhouse: what are the signals involved in plant mitochondrial biogenesis? Plant Signal. Behav. 2: 428–430.CrossRefGoogle Scholar
  14. Koornneef M. & Meinke D. 2010. The development of Arabidopsis as a model plant. Plant J. 61: 909–921.CrossRefGoogle Scholar
  15. Li P., Jiao J., Gao G. & Prabhakar B.S. 2012. Control of mitochondrial activity by miRNAs. J. Cell. Biochem. 113: 1104–1110.CrossRefGoogle Scholar
  16. Logan D.C. 2010. The dynamic plant chondriome. Semin. Cell Dev. Biol. 21: 550–557.CrossRefGoogle Scholar
  17. Logan D.C. & Leaver C.J. 2000. Mitochondria-targeted GFP highlights the heterogeneity of mitochondrial shape, size and movement within living plant cells. J. Exp. Bot. 51: 865–871.CrossRefGoogle Scholar
  18. Logan D.C., Millar A.H., Sweetlove L.J., Hill S.A. & Leaver C.J. 2001. Mitochondrial biogenesis during germination in maize embryos. Plant Physiol. 125: 662–672.CrossRefGoogle Scholar
  19. Martin J.J., Tocino Á., Ardanuy R., Juana G. & Cervantes E. 2014. Dynamic analysis of Arabidopsis seed shape reveals differences in cellulose mutants. Acta Physiol. Plant. 36: 1585–1592.CrossRefGoogle Scholar
  20. Merkwirth C. & Langer T. 2009. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. Biochim. Biophys. Acta 1793: 27–32.CrossRefGoogle Scholar
  21. Oparka K.J., Gates P.J. & Boulter D. 1981. Regularly aligned mitochondria in aleurone and sub-aleurone layers of developing rice caryopses. Plant Cell Environ 4: 355–357.CrossRefGoogle Scholar
  22. Ramonell K.M., Kuang A., Porterfleld D.M., Crispí M.L., Xiao Y., McClure G. & Musgrave M.E. 2001. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana. Plant Cell Environ. 24: 419–428.CrossRefGoogle Scholar
  23. Rolletschek H., Borisjuk L., Koschorreck M., Wobus U. & Weber H. 2002. Legume embryos develop in a hypoxic environment. J. Exp. Bot. 53: 1099–1107.CrossRefGoogle Scholar
  24. Rosenfeld E., Schaeffer J., Beauvoit B. & Salmon J.M. 2004. Isolation and properties of promitochondria from anaerobic stationary-phase yeast cells. Antonie Van Leeuwenhoek 85: 9–21.CrossRefGoogle Scholar
  25. Schiefelbein J.W., Masucci J.D. & Wang H. 1997. Building a root: the control of patterning and morphogenesis during root development. Plant Cell 9: 1089–1098.CrossRefGoogle Scholar
  26. Seguí-Simarro J.M., Coronado M.J. & Staehelin L.A. 2008. The mitochondrial cycle of Arabidopsis shoot apical meristem and leaf primordium meristematic cells is defined by a perinuclear tentaculate/cage-like mitochondrion. Plant Physiol. 148: 1380–1393.CrossRefGoogle Scholar
  27. Seguí-Simarro J.M. & Staehelin L. A. 2009. Mitochondrial reticulation in shoot apical meristem cells of Arabidopsis provides a mechanism for homogenization of mtDNA prior to gamete formation. Plant Signal. Behav. 4: 168–171.CrossRefGoogle Scholar
  28. Sheahan M.B., McCurdy D.W. & Rose R.J. 2005. Mitochondria as a connected population: ensuring continuity of the mitochondrial genome during plant cell dedifferentiation through massive mitochondrial fusion. Plant J. 44: 744–755.CrossRefGoogle Scholar
  29. Ubeda-Tomas S., Federici R., Casimiro I., Beemster G.T., Bhalerao R., Swarup R., Doerner P., Haseloff J. & Bennett M.J. 2009. Gibberellin signaling in the endodermis controls Arabidopsis root meristem size. Curr. Biol. 19: 1194–1199.CrossRefGoogle Scholar
  30. Van Gestel K. & Verbelen J.P. 2002. Giant mitochondria are a response to low oxygen pressure in cells of tobacco (Nicotíana tabacum L.). J. Exp. Bot. 53: 1215–1218.CrossRefGoogle Scholar
  31. Welchen E., Garcia L., Mansilla N. & Gonzalez D.H. 2014. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements. Front. Plant Sci. 4: 551.CrossRefGoogle Scholar
  32. Yamamoto H., Morino K., Nishio Y., Ugi S., Yoshizaki T., Kashi-wagi A. & Maegawa H. 2012. MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am. J. Physiol. Endocrinol. Metab. 303: E1419-E1427.Google Scholar
  33. Yoo B.Y. 1970. Ultrastructural changes in cells of pea embryo radicles during germination. J. Cell Biol. 45: 158–171.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • José L. Rodríguez
    • 1
    • 2
    • 3
    Email author
  • Juana G. De Diego
    • 1
  • Francisco D. Rodríguez
    • 1
  • Emilio Cervantes
    • 2
  1. 1.Departamento de Bioquímica y Biología Molecular, Edificio DepartamentalUniversidad de SalamancaSalamancaSpain
  2. 2.IRNASA-CSICSalamancaSpain
  3. 3.Plant Developmental Genetics, Institute of BiophysicsThe Czech Academy of SciencesBrnoCzech Republic

Personalised recommendations