Advertisement

Biologia

, Volume 70, Issue 8, pp 1042–1052 | Cite as

Anatomical adaptations of the desert species Stipa lagascae against drought stress

  • Fayçal BoughallebEmail author
  • Raoudha Abdellaoui
  • Zied Hadded
  • Mohammed Neffati
Article

Abstract

Stipa lagascae R. & Sch. (perennial bunchgrass) is one of the most promising steppic species for arid and desert lands of Tunisia. The present study was designed to study the effect of drought on root and leaf anatomy, water relationship, and the growth of three- month-old S. lagascae plants, submitted to water deficit (5, 10, 15, 20, 30 days of withheld irrigation) and grown in pots in greenhouse conditions. The results show that water deficit treatments reduced the biomass accumulation (MS) and leaf water potential (Ψw) of plants. However, leaf relative water content (RWC) decreased significantly only at severe drought. The root’s anatomical features showed reduced root cross-sectional diameter under water deficit. Conversely, epidermis was unaffected by water stress. Moderate and/or severe water deficit (20–30 days) reduced significantly the cortex thickness, cortical cell size, stele diameter, xylem vessel diameter and the stele/root cross-sectional ratio, while the number of cortical cells increased for severe water deficit. The cuticles and mesophyll of S. lagascae was thickened by moderate to severe drought and the entire lamina thickness was increased significantly by 5.8% only after 30 days of water deficit while epidermis was unaffected by water deficit. However, severe water deficit (30 days) decreased the width and the length of the bundle sheath. At the same time, the mesophyll cells size and both the xylem and phloem vessels diameter diminished by 12, 16.8 and 17.5%, respectively. Leaf rolling occurs as a response to water deficit and its level increases as the drought period is progressing in plants while reduced bulliform cells size occurred only at severe water deficit. Our findings suggest a complex network of root and leaf anatomical adaptations such as a reduced vessel size with lesser cortical and mesophyll parenchyma formation and increased leaf rolling. These proprieties are required for the maintenance of water potential and energy storage under water stress which can improve the resistance of S. lagascae to survive in extremely arid areas.

Key words

Stipa lagascae anatomical changes bulliform cell water status drought xylem vessel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge all the technical staff of the Arid Regions Institute-Medenine (IRA) for their help to conductingthese experiments.

References

  1. Abernethy G.A., Fountain D.W. & Mcmanus M.T. 1998. Observations on the leaf anatomy of Festuca noyaezelandiae and biochemical response to a water deficit. N. Z. J. Bot. 36: 113–123.CrossRefGoogle Scholar
  2. Akram M. 2011. Growth and yield components of wheat under water stress of different growth stages. Bangl. J. Agril. Res. 36: 455–468.CrossRefGoogle Scholar
  3. Alvarez J.M., Rocha J.F. & Machado S.R. 2008. Bulliform cells in Loudetiopsis chrysothrix (Nees) Conert and Tristachya leiostachya Nees (Poaceae): Structure in relation to function. Braz. Arch. Biol. Technol. 51: 113–119.CrossRefGoogle Scholar
  4. Arnold D.H. & Mauseth J.D. 1997. Effetct of environmental factors on developpement of wood. Amer. J. Bot. 86: 367–371.CrossRefGoogle Scholar
  5. Athar H. & Ashraf M. 2005. Photosynthesis under drought stress, pp. 795-810. In: Pessarakli M. (ed.), Handbook Photosynthesis, second ed. CRC Press, New York, USA.Google Scholar
  6. Bacelar E.A., Correia C.M., MoutinhoPereira J.M., Goncalves B.C., Lopes J.I. & TorresPereira J.M. 2004. Sclerophylly and leaf anatomical traits of five fieldgrown olive cultivars growing under drought conditions. Tree Physiol. 24: 233–239.PubMedCrossRefGoogle Scholar
  7. Balsamo R.A., Willigen C.V., Bauer A.M. & Farrant J. 2006. Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Ann. Bot. 97: 985–991.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ben Ahmed C., Ben Rouina B. & Boukhris M. 2007. Effects of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia. Sci. Hort. 113: 267–277.Google Scholar
  9. Bohnert H.J., Nelson D.E. & Jensen R.G. 1995. Adaptations to environmental stresses. Plant Cell 7: 1099–1111.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bongi G. & Loreto F. 1989 Gas exchange properties of saltstressed olive (Olea europaea L.) leaves. Plant Physiol. 90: 1408–1416.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bosabalidis A.M. & Kofidis G. 2002. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci. 163: 375–379.CrossRefGoogle Scholar
  12. Boughalleb F. & Hajlaoui H. 2011. Physiological and anatomical changes induced by drought in two olive cultivars (cv Zamlati and Chemlali). Acta Physiol. Plant. 33: 53–65.CrossRefGoogle Scholar
  13. Burghardt M., Burghardt A., Gall J., Rosenberger C. & Riederer M. 2008. Ecophysiological adaptations of water relations of Teucrium, chamaedrys L. to the hot and dry climate of xeric limestone sites in Franconia (Southern Germany). Fiora 203: 3–13.Google Scholar
  14. Burnett S.E., Thomas P.A. & Van Iersel M.W. 2000. Postegermination with PEG-8000 reduces growth of Salvia and manigolds. Hortscience 40: 675-679Google Scholar
  15. Burnett S.E., Pennisi S.V., Thomas P.A. & van Iersel M.W. 2005. Controlled drought affects morphology and anatomy of Salvia splendens. J. Amer. Soc. Hort. Sci. 130: 775–781.CrossRefGoogle Scholar
  16. Bussotti F., Bottacci A., Bartolesi A., Grossoni P. & Tani C. 1995. Morphoanatomical alterations in leaves collected from beech trees (Facus sylvatica L.) in conditions of natural water stress. Environ. Exp. Bot. 35: 201–213.CrossRefGoogle Scholar
  17. Chartzoulakis K., Patakas A. & Bosabalidis A. 1999. Changes in water relations, photosynthesis and leaf anatomy induced by intermittent drought in two olive cultivars. Environ. Exp. Bot. 42: 113–120.CrossRefGoogle Scholar
  18. Child R.D., Summers J.E., Babij J., Farrent J.W. & Bruce D.M. 2003. Increased resistance to pod chatter is associated with changes in the vascular structure in pods of a resynthesized Brassica napus line. J. Exp. Bot. 54: 1919–1930.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Clifford S.C., Arndt S.K., Popp M. & Jones H.G. 2002. Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought stress. J. Exp. Bot. 53: 131–138.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Cutler D.F., Botha T. & Stevenson D.W. 2007. Plant Anatomy. An applied approach. Blackwell Publishing, Australia.Google Scholar
  21. Da Silva S., Castro E.M. & Soares A.M. 2003. Effects of different water regimes on the anatomical characteristics of roots of grasses promising for revegetation of areas surrounding hydroelectric reservoirs. Ciénc Agrotec Lavras 27: 393–397.CrossRefGoogle Scholar
  22. Dickison W.C. 2000. Integrative Plant Anatomy. Harcourt Academie Press, San Diego, San Francisco, New York, Boston, London, Toronto, Sydney, Tokyo.Google Scholar
  23. Domingo R., RuizSánchez M.C., SánchezBlanco M.J. & Torrecillas A. 1999. Water relations, growth and yield of Fino lemon trees under regulated deficit irrigation. Irrig. Sci. 16: 115–123.CrossRefGoogle Scholar
  24. ElAfry M.M., ElNady M.F. & Abdelmonteleb E.B. 2012. Anatomical studies on droughtstressed wheat plants (TrifÁcum, aestivum L.) treated with some bacterial strains. Acta Biol. Szeg. 56: 165–174.Google Scholar
  25. Esau K. 1977. Anatomy of Seed Plants. 2nd ed. New York, John Wiley and Sons, pp. 351–353.Google Scholar
  26. Farouk S. & Amany A.R. 2012. Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egy. J. Biol. 14: 14–26.Google Scholar
  27. Fini A., Guidib L., Ferrini F., Brunettia C., Di Ferdinandoa M., Biricolti S., Pollastri S., Calamaia L. & Tattini M. 2012. Drought stress has contrasting effects on antioxidant enzymes activity and phenyl propanoid biosynthesis in Fraxinus ornus leaves: An excess light stress affair. J. Plant Physiol. 169: 929–939.PubMedCrossRefGoogle Scholar
  28. Galle A., Haldimann P. & Feller U. 2007. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol. 174: 799–810.PubMedCrossRefGoogle Scholar
  29. Gindaba J., Rozanov A. & Negash L. 2004. Response of seedlings of two Eucalyptus and three deciduous tree species from Ethiopia to severe water stress. For. Ecol. Manage. 201: 119–129.CrossRefGoogle Scholar
  30. Guerfel M., Baccouri O., Boujnah D., Chaibi W. & Zarrouk M. 2009. Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci. Hortic. 119: 257–263.CrossRefGoogle Scholar
  31. Jacobsen A.L., Ewers F.W., Pratt R.B., Paddock W.A. & Davis S.D. 2005. Do xylem fibers affect vessel cavitation resistance. Plant Physiol. 139: 546–556.PubMedPubMedCentralCrossRefGoogle Scholar
  32. James S.A. & Bell D.T. 1995. Morphology and anatomy of leaves of Eucalyptus camaldulensis clones: variation between geographically separated locations. Aust. J. Bot. 43: 415–433.CrossRefGoogle Scholar
  33. Kadioglu A. & Terzi R. 2007. A dehydration avoidance mechanism: Leaf rolling. Bot. Rev. 73: 290–302.CrossRefGoogle Scholar
  34. Kamel A. & Loser D.M. 1995. Contribution of carbohydrates and other solutes to osmotic adjustment in wheat leaves under water stress. J. Plant Physiol. 145: 363–366.CrossRefGoogle Scholar
  35. Kofidis G., Bosabalidis A.M. & Chartzoulakis K. 2004. Leaf anatomical alterations induced by drought stress in two avocado cultivars. J. Biol. Res. 1: 115–120.Google Scholar
  36. Kramer J. & Boyer J.S. 1995. Water Relation of Plants and Soils. Elsevier Science (USA), Acad. Press, San Diego, CA, 495 pp.Google Scholar
  37. Kutlu N., Terzi R., Tekeli C., Senel G., Battal P. & Kadioglu A. 2009. Changes in anatomical structure and levels of endogenous phytohormones during leaf rolling in Ctenanthe setosa. Turk. J. Biol. 33: 115–122.Google Scholar
  38. Lecoeur J. & Sinclair T.R. 1996. Field pea transpiration and leaf growth in response to soil water de ficits. Crop Sci. 36: 331–335.CrossRefGoogle Scholar
  39. Le fioch E., Neffati M., Chaieb M., fioret C. & Pontanier R. 1999. Rehabilitation experiment at Menel Habib, Southern Tunisia. Arid Soil Res. Rehab. 13: 357–368.CrossRefGoogle Scholar
  40. Lersten N.R. & Curtis J.D. 2001. Idioblasts and other unusual internal foliar secretary structures in Scrophulariaceae. Plant Syst. Evol. 227: 63–73.CrossRefGoogle Scholar
  41. Levitt J. 1972. Responses of Plants to Environmental Stresses. Academie Press, New York, pp. 31–47.Google Scholar
  42. Li F.L., Bao W.K. & Wu N. 2011. Morphological, anatomical and physiological responses of Campylotropis polyantha (Francii.) Schindl. seedlings to progressive water stress Sci. Hortic. 127: 436–443.Google Scholar
  43. Liu F. & Stiitzel H. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to water stress. Sci. Hortic. 102: 15–27.CrossRefGoogle Scholar
  44. Lo Gullo M.A., Salleo S., Piaceri E.C. & Rossor. 1995. Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Eniviron. 18: 661–669.CrossRefGoogle Scholar
  45. Lux A., Luxova M., Abe J. & Morita S. 2004. Root cortex: structural and functional variability and responses to environmental stress. Root Res. 13: 117–131.CrossRefGoogle Scholar
  46. Makbul S., Turkmen Z., Coskuncelebi K. & Beyazoglu O. 2008. Anatomical and pollen characters in the genus Epilobium, L. (Onagraceae) from northeast anatolia. Acta Biol. Cracov. Bot. 50: 57–67.Google Scholar
  47. Makbul S., Saruhan G.N., Durmus N. & Guven S. 2011. Changes in anatomical and physiological parameters of soybean under drought stress. Turk. J. Bot. 35: 369–377.Google Scholar
  48. Matsuda K. & Rayan A. 1990. Anatomy: A key factor regulating plant tissue response to water stress. In: Kafternan F. (ed.), Environment Injury to Plants, San Diego: Academie Press, 290 pp.Google Scholar
  49. Medrano H., Escalona J.M., Bota J., Gulias J. & fiexas J. 2002. Regulation of photosynthesis of C3 plants in response to progressive drought: Stomatal sonductance as a reference parameter. Ann Bot. 89: 895–905.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Moulia B. 1994. Biomechanics of leaf rolling. Biomimetics 2: 267–281.Google Scholar
  51. Nawazish S., Hameed M. & Naurin S. 2006. Leaf anatomical adaptations of Cenchrus ciliaris L. from the salt range, Pakistan against drought stress. Pak J. Bot. 38: 1723–1730.Google Scholar
  52. Nicotra A.B., Babicka N. & Westoby N. 2002. Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia 130: 136–145.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Niu G., Rodriguez D., Mendoza M., Jifon J. & Ganjegunte G. 2012. Reponses of Jatropha curcas to salt and drought stresses. Inter. J. Agronomy. Academie Editor, 7 pp.Google Scholar
  54. O’Connor T.G. 1991. Local extinction in perennial grasslands: A lifehistory approach. The Amer. Naturalist 137: 753–773.CrossRefGoogle Scholar
  55. O’Connor T.G. 1996. Hierarchical control over seedling recruitment of the bunchgrass Themeda triandra in a semiarid savanna. J. App. Ecol. 33: 1094–1106.CrossRefGoogle Scholar
  56. Ogbonnaya C.I., Nwalozie MC.., RoyMacauley H. & Annerose D. J.M. 1998. Growth and water relations of Kenaf (Hibiscus cannabinus L.) under water deficit on a sandy soil. Ind. Crops Prod. 8: 65–76.CrossRefGoogle Scholar
  57. Olmos E., SanchezBlanco M.J., Fernandez T. & Alarcon J.J. 2007. Subcellular effects of drought stress in Rosmarinus officinalis. Plant Biol. 9: 77–84.PubMedCrossRefPubMedCentralGoogle Scholar
  58. PeńaValdivia C.B., SánchezUrdaneta A.B., Trejo C., Aguirre R.J.R. & Cardenas E. 2005. Root anatomy of drought sensitive and tolerant maize (Zea mays L.) seedlings under different water potentials. Cereal Res. Comm. 33: 705–712.CrossRefGoogle Scholar
  59. PeńaValdivia C.B. & SánchezUrdaneta A.B. 2009. Effects of substrate water potential in root growth of Agáve salmiana Otto ex SalmDyck seedlings. Biol. Res. 42: 239–248.Google Scholar
  60. PeńaValdivia C.B., SánchezUrdaneta A.B., Rangel J.M., Muńoz J.J., GarcíaNava R. & Velázquez R.C. 2010. Anatomical root variations in response to water deficit: wild and domesticated common bean (Phaseolus vulgaris L.) Biol. Res. 43: 417–427.Google Scholar
  61. Price A.H., Young E.M. & Tomos A.D. 1997. Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (Oryza sativa). New Phytol. 137: 83–91.CrossRefGoogle Scholar
  62. Reddy A.R., Chiatanya K.V. & Vivekanandan M. 2004. Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189–1202.CrossRefGoogle Scholar
  63. Rosales M., CuellarOrtiz S., AcostaGallegos J. & Cavarrabias A. 2012. Physiological traits related to terminal drought resistance in common bean Phaseolus vulgaris L. J. Sci. Food Agric. 93: 324–331.PubMedCrossRefGoogle Scholar
  64. Sairam R.K. & Tyagi A. 2004. Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 6: 407–421.CrossRefGoogle Scholar
  65. Saleem M., Lamkemeyer T., Schutzenmeister M.T., Sakai H., Piepho H.P., Nordheim A. & Hochholdinge F. 2010. Speci fication of cortical parenchyma and stele of maize primary roots by asymmetric levels of auxin, cytokinin, and cytokininregulated proteins. Plant Physiol. 152: 4–18.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Salisbury F.B. & Ross C.W. 1992. Plant Physiology. Wadsworth Publishing Company, Belmont.Google Scholar
  67. Sam O., Jeréz E. & Varela M. 1996. Caracteristicas anatomicas de hojas de apa (Solanum, tuberosum L.) y tomate (Lycopersycon esculentum Mill.) can diferentes grados de tolerancia a estres de humedad y temperatura. Cultivos Tropicales 17: 32–38.Google Scholar
  68. Sam O., Jeréz E., Dell’Amico J. & RuizSánchez M.C. 2000. Water stress induced changes in anatomy of tomato leaf epidermis. Biol. Plant. 43: 275–277.CrossRefGoogle Scholar
  69. Scholz H. 1991. Stipa tunetana, eine neue Artaus Tunesien, und das St. lagascae Aggregat (Gramineae). Willdenowia 26: 225–228.Google Scholar
  70. Schultz H.R. & Matthews M.A. 1988. Resistance to water transport in shoots of VifÁs vinifero, L. Plant Physiol. 88: 718–724.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Selim H. & ElNady M. 2011. Physioanatomical responses of drought stressed tomato plants to magnetic field. Acta Astro. 2: 1–9.Google Scholar
  72. Shao H.B., Chu L.Y., Jaleel CA. & Zhao C.X. 2008. Water deficit stress induced anatomical changes in higher plants. C. R. Biol. 331: 215–225.PubMedCrossRefGoogle Scholar
  73. Shilei G., Sheng Z. & Hong W. 2002. Anatomical characters of stems and leaves of three lawn grasses. J. Trop. Subtrop. Bot. 10: 145–151.Google Scholar
  74. Sibounheuang V., Basnayake J. & Fukai S. 2006. Genotypic consistency in the expression of leaf water potential in rice (Oryzo, sativa L.). Field Crops Res. 97: 142–154.CrossRefGoogle Scholar
  75. Silva S., Soares A.M., Oliveira L.E.M. & Magalháes P.C. 2001. Respostas fisiológicas de gramíneas promissoras para revegetação ciliar de reservatórios hidrelétricos, submetidas à deficięncia hídrica. Cięncia Agrotécnica 25: 124–133.Google Scholar
  76. Singh A., Shamim M. & Singh K.N. 2013. Genotypic variation in root anatomy, starch accumulation, and protein induction in upland rice (Oryzo, sativa) varieties under water stress. Agric. Res. 2: 24–30.CrossRefGoogle Scholar
  77. Srivastava L.M. 2001. Plant growth and development. Digital stock Inc., 718 pp.Google Scholar
  78. Stiller V., Lafitte H.R. & Sperry J.S. 2003. Hydraulic properties of rice and the response of gas exchange to water stress. Plant Physiol. 132: 1698–1706.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Stolf R., Medri M.E., Pimenta J.A., Boeger M.R.T., Dias J., Lemos N.G., de Oliveira M.C.N., Brogin R.L., Yamanaka N., Neumaier N., Farias J.R.B. & Nepomuceno A.L. 2009. Morphoanatomical and micromorphometrical evaluations in soybean genotypes during water stress. Braz. Arch Biol. Technol. 52: 1313–1331.CrossRefGoogle Scholar
  80. Syvertsen J.F., Lloyd J., McConchie C., Kriedemann P.E. & Farquhar G.D. 1995. On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ. 18: 149–157.CrossRefGoogle Scholar
  81. Twumasi P., van Ieperen W., Woltering E.J., Emons A.M.C., Schel J.H.N., Schel J.F.H., van Meeteren U. & van Marwijk D. 2005. Effects of water stress during growth on xylem anatomy, xylem functioning and vaše life in three Zinnia elegans cultivars. Acta Hort. 669: 303–311.CrossRefGoogle Scholar
  82. Uga Y., Okuno K. & Yano M. 2008. QTLs underlying natural variation in stele and xylem structures of rice root. Breeding Sci. 58: 7–14.CrossRefGoogle Scholar
  83. van Ieperen W., Nijsse J., Keijzer C.J. & Van Meeteren U. 2001. Induction of air embolism in xylem conduits of prede fined diameter. J. Exp. Bot. 52: 981–991.PubMedCrossRefPubMedCentralGoogle Scholar
  84. Vasellati V., Oesterheld M., Medan D. & Loreti J. 2001. Effects of flooding and drought on the anatomy of Paspalum, dilatatum. Ann. Bot. 88: 355–360.CrossRefGoogle Scholar
  85. Wang W., Vincour B. & Altman A. 2003. Plant responses to drought, salinity and extréme temperatures: towards genetic engineering for stress tolerance. Planta 218: 1–14.CrossRefGoogle Scholar
  86. Xiang J.J., Zhang G.H., Qian Q. & HongWei X.H.W. 2012. Encodes a putative glycosylphosphatidylinositolanchored protein and modulates rice leaf rolling by regulating the formation of bulliform cells. Plant Physiol. 159: 1488–1500.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Zhu J.K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66–71.PubMedCrossRefPubMedCentralGoogle Scholar
  88. Zimmermann M.H. 1983. Xylem Structure and the Ascent of Sap. SpringerVerlag, Berlin, Heidelberg, New York, Tokyo, 143 pp.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • Fayçal Boughalleb
    • 1
    Email author
  • Raoudha Abdellaoui
    • 1
  • Zied Hadded
    • 2
  • Mohammed Neffati
    • 1
  1. 1.Laboratoire ďEcologie Pastorale, Institut des Régions Arides de MédenineUniversité de GabesMédenineTunisia
  2. 2.Faculté des Sciences de GabesUniversité de Gabes Sidi Rzig GabesTunisia

Personalised recommendations