Advertisement

Biologia

, Volume 70, Issue 5, pp 703–708 | Cite as

Protective effects of bioconjugates of curcumin with nicotinic and picolinic acids on markers of oxidative stress in human erythrocytes

  • Syed Ibrahim Rizvi
  • Archana Pandey
  • Ravindra Kumar Gupta
  • Kanti Bhooshan PandeyEmail author
Section Cellular and Molecular Biology

Abstract

Poor bioavailability and instability beyond the natural pH limit the use of curcumin as a promising drug despite its diverse health promoting effects. With a view to address these issues, the bioconjugates of curcumin with nicotinic acid (di-O-nicotinoyl curcumin) and picolinic acid (di-O-picolinoyl curcumin) were synthesized and their effect on markers of oxidative stress were studied. Results demonstrate that both the bioconjugates elicited higher prevention against oxidative injury induced by tert-butyl hydroperoxide in human erythrocytes in comparison to pure curcumin as evidenced by inhibition of lipid peroxidation (p < 0.01), prevention of hemolysis (p < 0.001), restoration of glutathione (p < 0.005), and -SH groups (p < 0.005) depletion. The study concludes that conjugated curcumin derivatives may be a potential approach to design compounds with improved biological effects and thus enhanced efficacy.

Key words

curcumin bioconjugates oxidative stress biomarker erythrocytes 

Abbreviations

DCM

dichloromethane

DNC

di-O-nicotinoyl curcumin

DPC

di-O-picolinoyl curcumin

GSH

glutathione

MDA

malondialdehyde

RBC

red-blood cells

t-BHP

tert-butylhydroperoxide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand P., Kunnumakkara A.B., Newman R.A. & Aggarwal B.B. 2007. Bioavailability of curcumin: problems and romises. Mol. Pharm. 4: 807–818.CrossRefGoogle Scholar
  2. Berzosa C., Gómez-Trullén E.M., Piedrafita E., Cebrián I., Martínez-Ballarín E., Miana-Mena F.J., Fuentes-Broto L. & García J.J. 2011. Erythrocyte membrane fluidity and indices of plasmatic oxidative damage after acute physical exercise in humans. Eur. J. Appl. Physiol. 111: 1127–1133.CrossRefGoogle Scholar
  3. Bonomini F., Rodella L.F. & Rezzani R. 2015. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 6: 109–120.CrossRefGoogle Scholar
  4. Dubey S.K., Sharma A.K., Narain U., Misra K. & Pati U. 2008. Design, synthesis and characterization of some bioactive conjugates of curcumin with glycine, glutamic acid, valine and demethylenated piperic acid and study of their antimicrobial and antiproliferative properties. Eur. J. Med. Chem. 43: 1837–1846.CrossRefGoogle Scholar
  5. Esterbauer H. & Cheeseman K.H. 1990. Determination of alde-hydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 186: 407–421.CrossRefGoogle Scholar
  6. Goel A., Kunnumakkara A.B. & Aggarwal B.B. 2008. Curcumin as “curecumin”: from kitchen to clinic. Biochem. Pharmacol. 75: 787–809.CrossRefGoogle Scholar
  7. Halliwell B. & Gutteridge J.M.C. 2006. Free Radicals in Biology and Medicine. 4th Ed. Clarendon Press, Oxford.Google Scholar
  8. Kitajima H., Amaguchi T. & Kinoto E. 1990. Hemolysis of human erythrocytes under hydrostatic pressure is suppressed by crosslinking of membrane proteins. J. Biochem. 108: 1057–1062.CrossRefGoogle Scholar
  9. Ko F.N., Hsiao G. & Kuo Y.H. 1997. Protection of oxida-tive hemolysis by demethyldiisoeugenol in normal and β-thalassemic red blood cells. Free Radic. Biol. Med. 22: 215–222.CrossRefGoogle Scholar
  10. Liu J., Chen S., Lv L., Song L., Guo S. & Huang S. 2013. Recent progress in studying curcumin and its nano-preparations for cancer therapy. Curr. Pharm. Des. 19: 1974–1993.PubMedGoogle Scholar
  11. Lowry O.H., Rosenbrough N.J., Farr A.L. & Randall R.J. 1951. Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  12. Manju S. & Sreenivasan K. 2011. Conjugation of curcumin onto hyaluronic acid enhances its aqueous solubility and stability. J. Colloid. Interface Sci. 359: 318–325.CrossRefGoogle Scholar
  13. Pandey A., Dwivedi V. & Misra K. 2010. Drug sensitivity of curcumin analogues and bioconjugates, pp. 267–298. In: Gupta V.K., Taneja S.C. & Gupta B.D. (eds) Structural Modification and Drug Development, Studium Press LLC, USA.Google Scholar
  14. Pandey A., Gupta R.K. & Srivastava R. 2011a. Curcumin — the yellow magic. Asian J. Appl. Sci. 4: 343–354.CrossRefGoogle Scholar
  15. Pandey A., Pandey K.B., Gupta R.K. & Rizvi S.I. 2011b. Ferric reducing, antiradical and β-carotene bleaching activities of nicotinic acid and picolinic acid bioconjugates of curcumin. Nat. Prod. Commun. 6: 1877–1880.PubMedGoogle Scholar
  16. Pandey K.B., Mishra N. & Rizvi S.I. 2009. Myricetin may provide protection against oxidative stress in type 2 diabetic erythrocytes. Z. Naturforsch. C 64: 626–630.CrossRefGoogle Scholar
  17. Pandey K.B. & Rizvi S.I. 2010. Protective effect of resveratrol on markers of oxidative stress in human erythrocytes subjected to in vitro oxidative insult. Phytother. Res. 24: 11–14.CrossRefGoogle Scholar
  18. Pandey K.B. & Rizvi S.I. 2011. Biomarkers of oxidative stress in red blood cells. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 155: 131–136.CrossRefGoogle Scholar
  19. Pandey K.B. & Rizvi S.I. 2013. Resveratrol upregulates erythrocyte plasma membrane redox system and mitigates oxidation induced alterations in erythrocytes during aging in humans. Rejuvenation Res. 16: 232–240.CrossRefGoogle Scholar
  20. Pandey K.B. & Rizvi S.I. 2014. Role of resveratrol in regulation of membrane transporters and integrity of human erythrocytes. Biochem. Biophys. Res. Commun. 453: 521–526.CrossRefGoogle Scholar
  21. Pandey K.B. & Rizvi S.I. 2015. Redox biology of aging: focus on novel biomarkers, pp. 279–290. In: Rani V. & Yadav U.C.S. (eds), Free Radicals in Human Health and Disease, Springer Publishers Pvt. Ltd, India.Google Scholar
  22. Prasad S., Tyagi A.K. & Aggarwal B.B. 2014. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res. Treat. 46: 2–18.CrossRefGoogle Scholar
  23. Singh R.K., Rai D., Yadav D., Bhargava A., Balzarini J. & De Clercq E. 2010. Synthesis, antibacterial and antiviral properties of curcumin bioconjugates bearing dipeptide, fatty acids and folic acid. Eur. J. Med. Chem. 45: 1078–1086.CrossRefGoogle Scholar
  24. Sudhahar C.G., Haney R.M., Xue Y. & Stahelin R.V. 2008. Cellular membranes and lipid-binding domains as attractive targets for drug development. Curr. Drug Targets 9: 603–613.CrossRefGoogle Scholar
  25. Vallianou N.G., Evangelopoulos A., Schizas N. & Kazazis C. 2015. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 35: 645–651.PubMedGoogle Scholar
  26. Wang Y.J., Pan M.H., Cheng A.L., Lin L.I., Ho Y.S., Hsieh C.Y. & Lin J.K. 1997. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 12: 1867–1876.CrossRefGoogle Scholar
  27. Wu G., Fang Y.Z., Yang S., Lupton J.R. & Turner N.D. 2004. Glutathione metabolism and its implications for health. J. Nutr. 134: 489–492.CrossRefGoogle Scholar
  28. Yang R., Zhang S., Kong D., Gao X., Zhao Y. & Wang Z. 2012. Biodegradable polymer-curcumin conjugate micelles enhance the loading and delivery of low-potency curcumin. Pharm. Res. 29: 3512–3525.CrossRefGoogle Scholar
  29. Zeng C., Zhong P., Zhao Y., Kanchana K., Zhang Y., Khan Z.A., Chakrabarti S., Wu L., Wang J. & Liang G. 2015. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J. Mol. Cell. Cardiol. 79: 1–12.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • Syed Ibrahim Rizvi
    • 1
  • Archana Pandey
    • 2
  • Ravindra Kumar Gupta
    • 2
  • Kanti Bhooshan Pandey
    • 1
    Email author
  1. 1.Department of BiochemistryUniversity of AllahabadAllahabadIndia
  2. 2.Department of ChemistryC.M.P CollegeAllahabadIndia

Personalised recommendations