Advertisement

Biologia

, Volume 70, Issue 5, pp 599–605 | Cite as

Molecular characterization and phylogenetic analysis of ZmMCUs in maize

  • Qingchang MengEmail author
  • Yuanyuan Chen
  • Meijing Zhang
  • Yanping Chen
  • Jianhua Yuan
  • Seth C. Murray
Section Cellular and Molecular Biology

Abstract

The mitochondrial calcium uniporter (MCU), located in the organelle’s inner membrane of eukaryotic organisms, is a highly selective ion channel which plays a unique role in the calcium signaling. Six MCU-like genes (assigned as ZmMCU1ZmMCU6) were identified in the maize genome. Genomic analysis revealed that these six genes were located on chromosome 1, 3, 8 and 9. Sequence identity percent between ZmMCU1 and ZmMCU2, or between ZmMCU4 and ZmMCU5 was relatively high at both the nucleic acid and amino acid levels. Sequence alignment of ZmMCU indicated that for plants, there was “DVME” motif in the deduced protein sequences. Digital expression analysis showed the ZmMCU6 was strongly expressed in all of the studied organs in maize, while the other five ZmMCU genes had unique expression patterns. In the developing seeds of maize, the six ZmMCU genes had three divergent expression patterns. Finally, the phylogenetic analysis demonstrated that MCU homologs in plants could be grouped into two types and each type could be further classified into two subtypes along the monocot and dicot division. Moreover, MCU homologs in both the dicot and monocot had been independently duplicated and then those in maize had undergone an extra duplication for two subclades. Based on genomic structure, sequence similarity, digital expression profile, and phylogenetic analysis, our results clearly suggested that ZmMCU1 and ZmMCU2 as well as ZmMCU4 and ZmMCU5 are functionally redundant in maize genome.

Key words

mitochondrial calcium uniporter phylogenetic inference maize (Zea maysgene duplication 

Abbreviations

MCU

mitochondrial calcium uniporter

MYA

million years ago.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11756_2015_7005599_MOESM1_ESM.pdf (95 kb)
Supplementary material, approximately 44.6 KB.

References

  1. Adams K. L. & Wendel J. F. 2005. Polyploidy and genome evolution in plants. Curr. Opin. Plant Biol. 8: 135–141.CrossRefGoogle Scholar
  2. Altschul S. F., Madden T. L., Sch¨affer A. A., Zhang J., Zhang Z., Miller W. & Lipman D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.CrossRefGoogle Scholar
  3. Baughman J. M., Perocchi F., Girgis H. S., Plovanich M., Belcher-Timme C. A., Sancak Y., Bao X. R., Strittmatter L., Gold-berger O., Bogorad R. L., Koteliansky V. & Mootha V. K. 2011. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476: 341–345.CrossRefGoogle Scholar
  4. Becker A. & Theissen G. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol. Phylogenet. Evol. 29: 464–489.CrossRefGoogle Scholar
  5. Bick A. G., Calvo S. E. & Mootha V. K. 2012. Evolutionary diversity of the mitochondrial calcium uniporter. Science 336: 886.CrossRefGoogle Scholar
  6. Chaudhuri D., Sancak Y., Mootha V. K. & Clapham D. E. 2013. MCU encodes the pore conducting mitochondrial calcium currents. eLife 2: e00704.CrossRefGoogle Scholar
  7. De Stefani D., Raffaello A., Teardo E., Szabo I. & Rizzuto R. 2011. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476: 336–340.CrossRefGoogle Scholar
  8. Felsenstein J. 1993. Phylip (Phylogeny Inference Package) version 3.57c. Department of Genetics, University of Washington, Seattle; https://doi.org/www0.nih.go.jp/∼jun/research/phylip/main.html.Google Scholar
  9. Guo A., Zhu Q., Chen X. & Luo J. 2007. GSDS: a gene structure display server. Yi Chuan 29: 1023–1026.CrossRefGoogle Scholar
  10. Hedges S. B., Blair J. E., Venturi M. L. & Shoe J. L. 2004. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol. Biol. 4: 2.CrossRefGoogle Scholar
  11. Hetherington A. M. & Brownlee C. 2004. The generation of Ca2+ signals in plants. Annu. Rev. Plant Biol. 55: 401–427.CrossRefGoogle Scholar
  12. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., Lopez R., Thompson J. D., Gibson T. J. & Higgins D. G. 2007. ClustalW and ClustalX version 2.0. Bioinformatics 23: 2947–2948.CrossRefGoogle Scholar
  13. Lawrence C. J., Schaeffer M. L., Seigfried T. E., Campbell D. A. & Harper L. C. 2007. MaizeGDB’s new data types, resources and activities. Nucleic Acids Res. 35: 895–900.CrossRefGoogle Scholar
  14. Lecourieux D., Raneva R. & Pugin A. 2006. Calcium in plant defence-signalling pathways. New Phytol. 171: 249–269.CrossRefGoogle Scholar
  15. Lee T. H., Tang H., Wang X. & Paterson A. H. 2013. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res. 41: 1152–1158.CrossRefGoogle Scholar
  16. Marchi S. & Pinton P. 2014. The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J. Physiol. 592: 829–839.CrossRefGoogle Scholar
  17. Marchi S., Lupini L., Patergnani S., Rimessi A., Missiroli S., Bonora M., Bononi A., Corra F., Giorgi C., De Marchi E., Poletti F., Gafa R., Lanza G., Negrini M., Rizzuto R. & Pinton P. 2013. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr. Biol. 23: 58–63.CrossRefGoogle Scholar
  18. Margis R., Fusaro A. F., Smith N. A., Curtin S. J., Watson J. M., Finnegan E. J. & Waterhouse P. M. 2006. The evolution and diversification of dicers in plants. FEBS Lett. 580: 2442–2450.CrossRefGoogle Scholar
  19. Martell J. D., Deerinck T. J., Sancak Y., Poulos T. L., Mootha V. K., Sosinsky G. E., Ellisman M. H. & Ting A. Y. 2012. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nat. Biotechnol. 30: 1143–1148.CrossRefGoogle Scholar
  20. McAinsh M. R. & Pittman J. K. 2009. Shaping the calcium signature. New Phytol. 181: 275–294.CrossRefGoogle Scholar
  21. Meng Q., Zhang C., Gai J. & Yu D. 2007. Molecular cloning, sequence characterization and tissue-specific expression of six NAC-like genes in soybean (Glycine max (L.) Merr.). J. Plant Physiol. 164: 1002–1012.CrossRefGoogle Scholar
  22. Pendin D., Greotti E. & Pozzan T. 2014. The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. Cell Calcium 55: 139–145.CrossRefGoogle Scholar
  23. Prole D. L. & Taylor C. W. 2012. Identification and analysis of cation channel homologues in human pathogenic fungi. PLoS One 7: e42404.CrossRefGoogle Scholar
  24. Raffaello A., De Stefani D., Sabbadin D., Teardo E., Merli G., Picard A., Checchetto V., Moro S., Szabo I. & Rizzuto R. 2013. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 32: 2362–2376.CrossRefGoogle Scholar
  25. Sancak Y., Markhard A. L., Kitami T., Kovacs-Bogdan E., Kamer K. J., Udeshi N. D., Carr S. A., Chaudhuri D., Clapham D. E., Li A. A., Calvo S. E., Goldberger O. & Mootha V. K. 2013. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342: 1379–1382.CrossRefGoogle Scholar
  26. Schnable P. S., Ware D., Fulton R. S., Stein J. C., Wei F., Pasternak S., Liang C., & Cordes M. 2009. The B73 maize genome: complexity, diversity, and dynamics. Science 326: 1112–1115.CrossRefGoogle Scholar
  27. Sekhon R. S., Lin H., Childs K. L., Hansey C. N., Buell C. R., de Leon N. & Kaeppler S. M. 2011. Genome-wide atlas of transcription through maize development. Plant J. 66: 553–563.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • Qingchang Meng
    • 1
    Email author
  • Yuanyuan Chen
    • 2
  • Meijing Zhang
    • 1
  • Yanping Chen
    • 1
  • Jianhua Yuan
    • 1
  • Seth C. Murray
    • 2
  1. 1.Institute of Food CropsJiangsu Academy of Agricultural SciencesNanjingPeople’s Republic of China
  2. 2.Department of Soil and Crop ScienceTexas A&M UniversityCollege StationUSA

Personalised recommendations