Advertisement

Biologia

, Volume 70, Issue 5, pp 667–673 | Cite as

Responses of the long-eared owl Asio otus diet and the numbers of wintering individuals to changing abundance of the common vole Microtus arvalis

  • Filip TulisEmail author
  • Michal Baláž
  • Ján Obuch
  • Karol Šotnár
Section Zoology

Abstract

Opportunistic predator like the long-eared owl is able to respond to population fluctuations of its main prey. The composition of the winter diet of this owl species was investigated during the period of 13 winters (1992–2000, 2006–2011) in agricultural areas in Slovakia. In total, we found 23 mammal species and 33 bird species (H’ = 0.82) in pellets. The frequency of the dominant prey species, the common vole, varied from 57.7% to 92.4%. Our data show that the abundance of the common vole: (i) had biggest impact on the food niche breadth of the long-eared owl; (ii) when in decline, it was significantly compensated by the increase in the amount of 15 other accessory species (subject to the specific diet offered during the study winters); (iii) was positively correlated with the number of owls in the winter-roost, which varied during the 13 studied winters.

Key words

long-eared owl prey pellets winter-roost common vole fluctuation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, M. 1980. Nomadism and site tenacity as alternative reproductive tactics in birds. J. Anim. Ecol. 49 (1): 175–184. DOI:  https://doi.org/10.2307/4282CrossRefGoogle Scholar
  2. Anděra, M. & Horáček, I. 2005. Poznáváme naše savce [We get to know our mammals]. Sobotáles, Praha, 327 pp. ISBN: 80-86817-08-3Google Scholar
  3. Aschwanden, J., Birrer, S. & Jenni, L. 2005. Are ecological compensation areas attractive hunting sites for common kestrels (Falco tinnunculus) and Long-eared Owl (Asio otus)? J. Ornithol. 146 (3): 279–286. DOI:  https://doi.org/10.1007/s10336-005-0090-9CrossRefGoogle Scholar
  4. Baláž I. & Ambros, M. 2006. Shrews (Sorex spp.) somatometry and reproduction in Slovakia. Biologia 61 (5): 611–620. DOI:  https://doi.org/10.2478/s11756-006-0098-5CrossRefGoogle Scholar
  5. Baláž I., Ambros, M., Tulis, F., Veselovský T., Klimant, P. & Augustiničová G. 2013. Hlodavce a hmyzožravce Slovenska [Rodents and insectivores of Slovakia]. FPV UKF, Nitra, edícia Prírodovedec č. 547, [FNS KFU, edition Prírodovedec č. 547] Nitra, 198 pp. ISBN: 978-80-558-0437-8Google Scholar
  6. Bethge, E. 1982. Zyklische Bestandswechsel (Gradationen) bei der Feldmaus (Microtus arvalis), festgestellt durch Analyse von Eulen–Gewöllen [Cyclic gradation of Common Vole (Microtus arvalis) determined by pellets analyses]. Z. Säugetierkunde 7: 215–219.Google Scholar
  7. Birrer, S. 2009. Synthesis of 312 studies on the diet of the Longeared Owl Asio otus. Ardea 7: 615–624. DOI:  https://doi.org/10.5253/078.097.0430CrossRefGoogle Scholar
  8. Bertolino, S., Ghiberti, E. & Perrone, A. 2001. Feeding ecology of Long-eared Owl (Asio otus) in northern Italy: is it a dietary specialist? Can. J. Zool. 79 (12): 2192–2198. DOI:  https://doi.org/10.1139/z01-182CrossRefGoogle Scholar
  9. Cecere, J.G., Bombino, S. & Santangeli, A. 2013: Winter diet of Long-eared Owl Asio otus in a Mediterranean Fragmented Farmland. Wilson, J. Ornithol. 125 (3): 655–658. DOI:  https://doi.org/10.1676/13-005.1CrossRefGoogle Scholar
  10. Galushin, V.M. 1974. Synchronous fluctuations in populations of some raptors and their prey. Ibis 116 (2): 127–134. DOI:  https://doi.org/10.1111/j.1474-919X.1974.tb00232.xCrossRefGoogle Scholar
  11. Galeotti, P. & Canova, L. 1994. Winter diet of Long-eared owls (Asio otus) in the Po Plain (northern Italy). J. Raptor Res. 28 (4): 265–268.Google Scholar
  12. Galeotti, P., Tavecchia, G. & Bonetti, A. 1997. Home-range and habitat use of Long-eared Owls in open farmland (Po plain, northern Italy), in relation to prey availability. J. Wild. Res. 2 (2): 137–145.Google Scholar
  13. García, M., Cervena, F. & Rodríguez, A. 2005. Bat predation by Long-eared owl in Mediterranean and temperate regions of southern Europe. J. Raptor Res. 34 (4): 445–453.Google Scholar
  14. Hagemeijer, W. J. M. & Blair, M. J. (eds). 1997. The EBCC Atlas of European Breeding Birds–Their Distribution and Abundance. T and AD Poyser, London, 903 pp. ISBN: 978-0-85661-091-2Google Scholar
  15. Hudec, K. & Štastný K. (eds) 2005. Fauna ČR. Ptáci–Aves 2. Akademie věd ČR. Prague, 1203.pp. ISBN-3: 978-80-200-1113-8, ISBN: 80-200-1113-7Google Scholar
  16. Huitu, O., Norrdahl, K. & Kormimäki, E. 2004. Competition, predation and interspecific synchrony in cyclic small mammal communities. Ecography 27 (2): 197–206. DOI:  https://doi.org/10.1111/j.0906-7590.2003.03684.xCrossRefGoogle Scholar
  17. Jacob, J., Manson, P., Barfknechtc, R. & Fredricksd, T. 2013. Common Vole (Microtus arvalis) ecology and management: implications for risk assessment of plant protection products. Pest Manag. Sci. 70 (6): 869–878. DOI:  https://doi.org/10.1002/ps.3695CrossRefGoogle Scholar
  18. Jacob, J. & Tkadlec, E. 2010. Rodent outbreaks in Europe: dynamics and damage, pp. 207–223. In: Singleton, G.R., Belmain S., Brown, P.R. & Hardy, B. (eds), Rodent Outbreaks: Ecology and Impacts, International Rice Research Institute, Los Banos, Philippines, 289 pp. ISBN: 978-971-22-0257-5Google Scholar
  19. Kitowski, I. 2013. Winter diet of the barn owl (Tyto alba) and the long-eared owl (Asio otus) in Eastern Poland. North-West. J. Zool. 9 (1): 16–21.Google Scholar
  20. Klein, R.G. & Cruz-Uribe, K. 1984. The Analysis of Animal Bones from Archaeological Sites. University of Chicago Press, Chicago, 273 pp. ISBN: 9780.26439587Google Scholar
  21. Klok, C. & de Roos, A.M. 2007. Effects of vole fluctuations on the population dynamics of the barn owl Tyto alba. Acta Biotheoretica 55 (3): 227–241.DOI:  https://doi.org/10.1007/s10441-007-9013-xCrossRefGoogle Scholar
  22. Korpimäki, E. 1992. Diet composition, prey choice and breeding success of Long-eared Owls: effect of multiannual fluctuations in food abundance. Can. J. Zool. 70 (12): 2373–2381. DOI:  https://doi.org/10.1139/z92-319CrossRefGoogle Scholar
  23. Korpimäki, E. & Norrdahl, K. 1991. Numerical and functional responses of kestrels, short-eared owls, and longeared owls to vole densities. Ecology 2: 814–826. DOI: http://dx.doi.org/ https://doi.org/10.2307/1940584CrossRefGoogle Scholar
  24. Korpimäki, E. & Sulkava, S. 1987. Diet and breeding performance of Ural Owls Strix uralensis under fluctuating food conditions. Ornis Fennica 64 (2): 57–66.Google Scholar
  25. Kouba, M., Bartoš L. & Šťastný K. 2013. Differential movement patterns of juvenile tengmalms owls (Aegolius funereus) during the post-fledging dependence period in two years with contrasting prey abundance. PLoS ONE 8 (7): e67034. DOI:  https://doi.org/10.1371/journal.pone.0067.34.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kouba, M., Bartoš L. & Šťastný K. 2014. Factors affecting vocalization in tengmalm’s owl (Aegolius funereus) fledglings during post-fledging dependence period: Scramble competition or honest signalling of need? PLoS ONE 9(4): e95594. DOI:  https://doi.org/10.1371/journal.pone.0095.94CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lambin, X., Bretagnolle, V. & Yoccoz, N.G. 2006. Vole population cycles in northern and southern Europe: is there a need for different explanations for single pattern? J. Anim. Ecol. 75 (2): 340–349. DOI:  https://doi.org/10.1111/j.1365-2656.2006.01051.xCrossRefGoogle Scholar
  28. Lesi´nski, G. 2010. Long-term changes in abundance of bats as revealed by their frequency in tawny owls’ diet. Biologia 65 (4): 749–753. DOI:  https://doi.org/10.2478/s11756-010-0074-yCrossRefGoogle Scholar
  29. Levins, R. 1968. Evolution in Changing Environments: Some Theoretical Explorations. In: Levin, S.A. & Horn, H.S. (series eds), Monographs in Population Biology, Princeton University Press, Princeton, 132 pp. ISBN: 9780.91080628Google Scholar
  30. Mikkola, H. 1983. Owls of Europe. T & A. D. Poyser, Calton, Waterhouses, Staffordshire, England, UK, 397 pp. ISBN: 0-85661034-8.Google Scholar
  31. Obuch, J. 1982. Náčrt potravnej ekológie sov (Striges) v strednej časti Turca [Outline of the diet ecology of owls (Striges) in central part of Turiec region]. Kmetianum 6: 81–106.Google Scholar
  32. Obuch, J. 1989. Náčrt premenlivosti potravy myšiarky ušatej (Asio otus) [Outline of variability of Long-eared Owl diet]. (Asio otus). Tichodroma 2: 49–63.Google Scholar
  33. Obuch, J. 1998. Zastúpenie netopierov (Chiroptera) v potrave sov (Strigiformes) na Slovensku [Bat abundance (Chiroptera) in the diet of Owl in Slovakia]. Vespertilio 3: 65–74. ISBN: 80-88850-19-3Google Scholar
  34. Obuch, J. 2001. Využitie metódy výrazných odchýlok od priemeru (MDFM) pri vyhodnocovaní kontingenčných tabuliek. [Using marked differences from the mean (MDFM) method for evaluation of contingency tables]. Buteo 2: 37–46.Google Scholar
  35. Pirovano A, Rubolini, D., Brambilla, S. & Ferrari, N. 2000. Winter diet of urban roosting Long-eared Owls Asio otus in northern Italy: the importance of the Brown Rat Rattus norvegicus. Bird Study 47 (2): 242–244. DOI:  https://doi.org/10.1080/00063650009461181CrossRefGoogle Scholar
  36. Romanowski, J. & Z˙mihorski, M. 2008. Effect of season, weather and habitat on diet variation of a feeding specialist: a case study of the Long-eared Owl, Asio otus in Central Poland. Folia Zool. 57 (4): 411–419.Google Scholar
  37. Rubolini, D., Pivovarno, A. & Borghi, S. 2003. Influence of seasonality, temperature and rainfall on the winter diet of the log-eared owl, Asio otus. Folia Zool. 52 (1): 67–76.Google Scholar
  38. Sergio, F., Marchesi, L. & Pedrini, P. 2008. Density, diet and productivity of Long-eared Owls Asio otus in the Italian Alps: the importance of Microtus voles. Bird Study 5: 321–32.CrossRefGoogle Scholar
  39. Schmidt, E. 1975. Quantitative Untersuchungen an Kleinsäuger–Resten aus Waldohreulen–Gewöllen. Vertebr. Hung. 6: 77–83.Google Scholar
  40. Schmidt, E. & Topal, G. 1971. Denevér maradványok magyarországi bagolyköpetekb˝ol [Presence of bats in owl pellets from Hungary]. Vertebr. Hung. 2: 93–102.Google Scholar
  41. Shao, M. & Liu, N. 2006. The diet of the Long-eared Owls, Asio otus, in the desert of northwest China. J. Arid Environ. 65 (4): 673–676. DOI:  https://doi.org/10.1016/j.jaridenv.2005.10.006CrossRefGoogle Scholar
  42. Sharikov, A.V. & Makarova, T.V. 2014. Weather conditions explain variation in the diet of Long-eared Owl at winter roost in central part of European Russia. Ornis Fennica 91 (2): 100–107.Google Scholar
  43. Sharikov, A.V., Makarova, T.V. & Ganova, E.V. 2013. Long-term dynamics of Long-eared Owls Asio otus at a northern winter roost in European Russia. Ardea 101 (2): 171–176. DOI: http://dx.doi.org/ https://doi.org/10.5253/078.101.0212CrossRefGoogle Scholar
  44. Sheffield, L.M., Crait, C.R., Edge, W.D. & Wang, G. 2001. Response of American kestrels and gray-tailed voles to vegetation height and supplemental perches. Can. J. Zool. 79 (3): 380–385. DOI:  https://doi.org/10.1139/z00-220CrossRefGoogle Scholar
  45. Šálek, M. & Lövy, M. 2012. Spatial ecology and habitat selection of Little Owl Athene noctua during the breeding season in Central European farmland. Bird Conserv. Int. 22 (3): 328–338. DOI:  https://doi.org/10.1017/S0959270911000268CrossRefGoogle Scholar
  46. StatSoft Inc. 2007. STATISTICA, version 8.0. https://doi.org/www.statsoft.comGoogle Scholar
  47. Sundell, J., Huitu, O., Henttonen, H., Kaikusalo A, Korpimäki E., Pietiäinen, H., Saurola, P. & Hanski, I. 2004. Largescale spatial dynamics of vole populations in Finland revealed by the breeding success of vole-eating avian predators. J. Anim. Ecol. 73 (1): 167–178. DOI:  https://doi.org/10.1111/j.1365-2656.2004.00795.xCrossRefGoogle Scholar
  48. Šipöcz, T. 2004. Zber. Databázový program. Verzia 3.0 [Collection. Database program. Version 3]. Botanical Garden, Comenius University, Blatnica.Google Scholar
  49. Tome, D. 1991. Diet of the Long-eared Owl Asio otus in Yugoslavia. Ornis Fennica 68 (3): 114–118.Google Scholar
  50. Tome, D. 1994. Diet composition of the Long-eared Owl in central Slovenia: Seasonal variation in prey use. J. Raptors Res. 28 (4): 253–258.Google Scholar
  51. Tome, D. 2003. Functional response of the Long-eared Owl (Asio otus) to changing prey numbers: a 20-year study. Ornis Fennica 80 (2): 63–70.Google Scholar
  52. Veselovský T., Tulis, F. & Baláž I. 2012. Kľúč na určovanie drobných cicavcov na základe kraniologických znakov [Key for small mammals determination on the basin of craniological features] FF UKF v Nitre, Nitra, 68 pp. ISBN: 978-80-558-0164-3Google Scholar
  53. Wijnandts, H. 1984. Ecological energetics of the Long-eared Owl (Asio otus). Ardea 2: l–92.Google Scholar
  54. Z˙mihorski, M., Romanowski, J. & Chylarecki, P. 2012. Environmental factors affecting the densities of owls in Polish farmland during 1980–2005. Biologia 67 (6): 1204–1210.DOI:  https://doi.org/10.2478/s11756-012-0114-xGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • Filip Tulis
    • 1
    Email author
  • Michal Baláž
    • 2
  • Ján Obuch
    • 3
  • Karol Šotnár
    • 4
  1. 1.Department of Environmental Sciences, Faculty of Natural SciencesConstantine the Philosopher University in NitraNitraSlovakia
  2. 2.Department of Biology and EcologyCatholic UniversityRužomberokSlovakia
  3. 3.Botanical Garden of Comenius UniversityBlatnicaSlovakia
  4. 4.Gavloviča 1/5PrievidzaSlovakia

Personalised recommendations