Advertisement

Biologia

, Volume 70, Issue 4, pp 411–419 | Cite as

The biology and potential biotechnological applications of Bacillus safensis

  • Agbaje LateefEmail author
  • Isiaka Adedayo Adelere
  • Evariste Bosco Gueguim-Kana
Review
  • 3 Downloads

Abstract

Bacillus safensis colonizes a wide range of habitats, many of which are stringent for the survival of some microorganisms. Its survival in extreme environments relies on its unique physiological and genotypic characteristics. It was originally identified as a recalcitrant contaminant in a spacecraft-assembly facility (SAF) at the Jet Propulsion Laboratory, USA, from which it derived its specific epithet, safensis. The bacterium belongs to the Bacillus pumilus group, and is closely related to Bacillus pumilus, Bacillus altitudinis, Bacillus xiamenensis and Bacillus invictae. At times, B. safensis has been erroneously identified as B. pumilus, especially when extensive molecular analyses and some mass spectroscopic methods, such as matrix-assisted laser desorption/ionization time-of-fiight mass spectrometry (MALDI-TOF-MS), are not considered. B. safensis possesses some plant growth-promoting traits and also has promising biotechnological applications due to its ability to produce various industrial enzymes and industrially applicable secondary metabolites. It may be regarded as a safe industrial microorganism because its pathogenicity has never been evidenced. This review attempts to chronicles the biology of B. safensis and its exploit as a potential industrially important bacterium. The ecology, physiology, genetics, and biotechnological applications of B. safensis are hereby presented in this review. This represents the first compendium of information on its attributes and applications that may be useful in opening a new vista of research on the bacterium.

Key words

Bacillus safensis keratinase dehairing destaining biocatalysis nanoparticles plant growth promotion 

Abbreviations

MALDI-TOF-MS

matrix-assisted laser desorption/ionization time-of-fiight mass spectrometry

SAF

spacecraft-assembly facility

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

AL thanked authority of LAUTECH, Ogbomoso, for providing fund for some aspects of this work through the TETFund Research Project Intervention (APU/TETFund/114) for the project titled ‘Efficient Biotechnological Management of Keratin Waste to create Novel Products’, and AIA gratefully acknowledged authority of FUT, Minna, for study leave to undertake postgraduate study.

References

  1. Aboul-Ela H.M., Shreadah M.A., Abdel-Monem, N.M., Yakout, G.A. & van Soest R.W.M. 2012. Isolation, cytotoxic activity and phylogenetic analysis of Bacillus sp. bacteria associated with the red sea sponge Amphimedon ochracea. Adv. Biosci. Biotechnol. 3: 815–823CrossRefGoogle Scholar
  2. Achari G.A. & Ramesh R. 2014. Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. Int. J. Microbiol. 2014: 296521.Google Scholar
  3. Adewoye S.O. & Lateef A. 2004a. Evaluation of the microbiological characteristics of Oyun River -a polluted river in North-Central Nigeria. Poll. Res. 23: 587–591.Google Scholar
  4. Adewoye S.O. & Lateef A. 2004b. Assessment of the microbiological quality of Clarias gariepinus exposed to an industrial effluent in Nigeria. Environmentalist 24: 249–254.CrossRefGoogle Scholar
  5. Agbobatinkpo P.B., Thorsen L., Nielsen D.S., Azokpota P., AkissoeN., Hounhouigan J.D. & Jakobsen M. 2013. Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin. Int. J. Food Microbiol. 163: 231–238.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ahaotu I., Anyogu A., Njoku O.H., Odu N.N., Sutherland J.P. & Ouoba L.I. 2013. Molecular identification and safety of Bacillus species involved in the fermentation of African oil beans (Pentaclethram, acrophylla Benth.) for production of Ugba. Int. J. Food Microbiol. 162: 95–104.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Berrada I., Benkhemmar O., Swings J., Bendaou N. & Amar M. 2012. Selection of halophilic bacteria for biological control of tomato gray mould caused by Botrytis cinerea. Phytopathologia Mediterranea 51: 625–630.Google Scholar
  8. Bibi F., Yasir M., Song G.C., Lee S.Y. & Chung Y.R. 2012. Diversity and characterization of endophytic bacteria associated with tidal flat plants and their antagonistic effects on Oomycetous plant pathogen. Plant Pathol. J. 28: 20–31.CrossRefGoogle Scholar
  9. Branquinho R., Meirinhos-Soares L., Carrico J.A., Pintado M., & Peixe L.V. 2014a. Phylogenetic and clonality analysis of Bacillus pumilus isolates uncovered a highly heterogeneous population of different closely related species and clones. FEMS Microb Ecol. 90: 689–698.CrossRefGoogle Scholar
  10. Branquinho R., Sousa C., Lopes J., Pintado M.E., Peixe L.V. & Osorio H. 2014b. Differentiation of Bacillus pumilus and Bacillus safensis using MALDI-TOF-MS. PLoS ONE 9: e110127.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Branquinho R., Sousa C., Osorio H., Meirinhos-Soares L., Lopes J., Carrico J.A., Busse H., Abdulmawjood A., Klein G., Kampfer P., Pintado M.E. & Peixe L.V. 2014c. Bacillus in-victael sp. nov., isolated from, a health product. Int. J. Syst. Evol. Microbiol. 64: 3867–3876.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chakraborty U., Chakraborty B.N., Chakraborty A.P. & Dey P.L. 2013. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria. World J. Microbiol. Biotechnol. 29: 789–803.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Chi W.J., Park D.Y., Chang Y.K. & Hong S.K. 2012. A novel alkaliphilic xylanase from the newly isolated mesophilic Bacillus sp. MX47: production, purification, and characterization. Appl. Biochem. Biotechnol. 168: 899–909.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Domingos D.F., de Faria A.F., Galaverna R.S., Eberlin M.N., Greenfield P., Zucchi T.D., Melo I.S., Tran-Dinh N., Midgley, D. & de Oliveira V.M. 2015. Genomic and chemical insights into biosurfactant production by the mangrove-derived strain Bacillus safensis CCMA-560. Appl. Microbiol. Biotechnol. 99: 3155–3167.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Edelman J.R. & Lin Y.J. 2014. Microbiology of root crops, edible corms, tubers, bulbs, and rhizomes: an endobacteriological study. Int. J. Nutr. Food Sci. 3: 69–72.CrossRefGoogle Scholar
  16. Espinoza-Miranda S.S., Gomez-Rodriguez J.A. & Huete-Perez J.A. 2012. Mining for restriction endonucleases in Nicaragua. Encuentro 93: 49–62.CrossRefGoogle Scholar
  17. Farhadkhani M., Nikaeen M., Adergani B.A., Hatamzadeh M., Nabavi B.F. & Hassanzadeh A. 2014. Assessment of drinking water quality from bottled water coolers. Iranian J. Publ. Health 43: 678–681.Google Scholar
  18. Fisher M.C., Henk D.A., Briggs C.J., Brownstein J.S., Madoff L.C., McCraw S.L. & Gurr S.J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484: 186–194.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fridman S., Izhaki I., Gerchman Y. & Halpern M. 2012. Bacterial communities in floral nectar. Environ Microbiol. Report 4: 97–104.CrossRefGoogle Scholar
  20. Ganaie M.A., Lateef A. & Gupta U.S. 2014. Enzymatic trends of fructooligosaccharides production by microorganisms. Appl. Biochem. Biotechnol. 172: 2143–2159.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gerchman Y., Patichov R. & Zeltzer T. 2012. Lipolytic, proteolytic, and cholesterol-degrading bacteria from the human cerumen. Curr. Microbiol. 64: 588–591.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Goncharova A.V., Karpenyuk T.A., Tsurkan Y.S., Beisembaeva R.U., Kalbaeva A.M., Mukasheva T.D. & Ignatova L.V. 2013. Screening and identification of microorganisms-potential producers of arachidonic acid. Int. J. Biol. Agric. Biosystems Life Sci. Eng. 7: 368–371.Google Scholar
  23. Gupta A.K., Rastogi G., Nayduch D., Sawant S.S., Bhonde R.R. & Shouche Y.S. 2014. Molecular phylogenetic profiling of gut-associated bacteria in larvae and adults of flesh flies. Med. Vet. Entomol. 28: 345–354.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Kadyan S., Panghal M., Singh K. & Yadav J.P. 2013. Development of a PCR based marker system for easy identification and classification of aerobic endospore forming bacilli. SpringerPlus 2: 596.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kavamura V.N., Santos S.N., Silva J.L., Parma M.M., Avila L.A., Visconti A., Zucchi T.D., Taketani R.G., Andreote F.D. & Melo I.S. 2013. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol. Res. 168: 183–191.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Khaneja R., Perez-Fons L., Fakhry S., Baccigalupi L., Steiger S., To E., Sandmann G., Dong T.C., Ricca E., Fraser P.D. & Cutting S.M. 2010. Carotenoids found in Bacillus. J. Appl. Microbiol. 108: 1889–1902.PubMedGoogle Scholar
  27. Khianngam S., Pootaengon Y., Techakriengkrai T. & Tanasupawat S. 2014. Screening and identification of cellulose producing bacteria isolated from oil palm meal. J. Appl. Pharm. Sci. 4: 90–96.Google Scholar
  28. Khianngam S., Techakriengkrai T., Raksasiri B.V., Kanjanamaneesathian M. & Tanasupawat S. 2013. Isolation and screening of endophytic bacteria for hydrolytic enzymes from plant in mangrove forest at Pranburi, PrachuapKhiri Khan, Thailand, pp. 279–284. In: Endophytes for Plant Protection: the State of the Art, ISBN: 978-3-941261-11-2.Google Scholar
  29. Kothari V.V., Kothari R.K., Kothari C.R., Bhatt V.D., Nathani N.M., Koringa P.G., Joshi C.G. & Vyas B.R.M. 2013. Genomic sequence of salt-tolerant Bacillus safensis strain VK, isolated from saline desert area of Gujarat, India. Genome A 1: e00671–13.Google Scholar
  30. Kpikpi E.N., Thorsen L., Glover R., Dzogbefla V.P. & Jespersen L. 2014. Identification of Bacillus species occurring in Katong, an acid fermented seed condiment produced in Ghana. Int. J. Food Microbiol. 180: 1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kumar D., Parshad R. & Gupta V.K. 2014. Application of a statistically enhanced, novel, organic solvent stable lipase from Bacillus safensis DVL-43. Int. J. Biol. Macromol. 66: 97–107.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kwon R.H. & Ha B.J. 2012. Increased flavonoid compounds from fermented Houttuyni acordata using isolated six of Bacillus from traditionally fermented Houttuyni acordata. Toxicol. Res. 28: 117–122.PubMedPubMedCentralCrossRefGoogle Scholar
  33. La Due M.T., Nicholson W., Kern R. & Venkateswaran K. 2003. Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ. Microbiol. 5: 977–985.CrossRefGoogle Scholar
  34. Lateef A. 2004. The microbiology of a pharmaceutical effluent and its public health implications. World J. Microbiol. Biotechnol. 20: 167–171.CrossRefGoogle Scholar
  35. Lateef A., Adelere L.A. & Gueguim-Kana E.B. 2015a. Bacillus safensis LAU 13: a new novel source of keratinase and its multi-functional biocatalytic applications. Biotechnology & Biotechnological Equipment 29: 54–63.CrossRefGoogle Scholar
  36. Lateef A., Adelere LA., Gueguim-Kana E.B., Asafa T.B. & Beukes L.S. 2015b. Green synthesis of silver nanoparticles by using keratinase obtained from a strain of Bacillus safensis LAU 13. Int. Nano Lett. 5: 29–35.CrossRefGoogle Scholar
  37. Lateef A. & Gueguim-Kana E.B. 2012. Utilization of cassava wastes in the production of fructosyltransferase by Rhizopus stolonifer LAU 07. Romanian Biotechnol. Lett. 17: 7309–7316.Google Scholar
  38. Lateef A., Oloke J.K., Gueguim Kana E.B., Oyeniyi S.O., Onifade O.R., Oyeleye A.O. & Oladosu O.C. 2008. Rhizopus stolonifer LAU 07: a novel source of fructosyltransferase. Chemical Papers 62: 635–638.CrossRefGoogle Scholar
  39. Lateef A., Oloke J.K., Gueguim Kana E.B. & Raimi O.R. 2012. Production of fructosyltransferase by a local isolate of Aspergillus niger in both submerged and solid substrate media. Acta Aliment. 41: 100–117.CrossRefGoogle Scholar
  40. Lateef A., Oloke J.K. & Prapulla S.G. 2007a. The effect of ultra-sonication on the release of fructosyltransferase from Aure-obasidium pullulans CFR 77. Enzyme Microb. Technol. 40: 1067–1070.CrossRefGoogle Scholar
  41. Lateef A., Oloke J.K. & Prapulla S.G. 2007b. Purification and partial characterization of intracellular fructosyltransferase from a novel strain of Aureobasidium pullulans. Turk. J. Biol. 31: 147–154.Google Scholar
  42. Lateef A. & Yekeen T.A. 2006. Microbial attributes of a pharmaceutical effluent and its genotoxicity on Allium cepa. Int. J. Environ. Stud. 63: 534–536.Google Scholar
  43. Lateef A. Yekeen T.A. & Ufuoma P.E. 2007. Bacteriology and genotoxicity of some pharmaceutical wastewaters in Nigeria. Int. J. Environ. Health 1: 551–562.CrossRefGoogle Scholar
  44. Liu Y., Lai Q., Dong C., Sun F., Wang L., Li G. & Shao Z. 2013. Phylogenetic diversity of the Bacillus pumilus group and the marine ecotype revealed by multilocus sequence anal ysis. PLoS ONE 8: e80097.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Mathe I., Benedek T., Tancsics A., Palatinszky M., Lanyi S. & Marialigeti K. 2012. Diversity, activity, antibiotic and heavy metal resistance of bacteria from petroleum hydrocarbon contaminated soils located in Harghita County (Romania). Int. Biodeter. Biodegr. 73: 41–49.CrossRefGoogle Scholar
  46. Mekuto L., Jackson V.A. & Ntwampe S.K.O. 2013. Biodegrada-tion of free cyanide using Bacillus sp. consortium dominated by Bacillus safensis, licheniformis and tequilensis strains: A bioprocess supported solely with whey. J. Bioremed. Biodegr. S18: 004.Google Scholar
  47. Mitmesser S.H. & Jensen C.L. 2007. Roles of long-chain polyunsaturated fatty acids in the term infant: developmental benefits. Neonatal Network 26: 229–234.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Motesharezadeh B. & Savaghebi-Firoozabadi G.R. 2011. Study of the increase in phytoremediation efficiency in a nickel polluted soil by the usage of native bacteria: Bacillus safensis FO.036b and Micrococcus roseus M2. Caspian J. Environ. Sci. 9: 133–143.Google Scholar
  49. Nath A., Chakrabarty S., Sarkar S., Bhattacharjee C., Drioli E. & Chowdhury R. 2013. Purification and characterization of β-galactosidase synthesized from Bacillus safensis (JUCHE 1). Ind. Eng. Chem. Res. 52: 11663–11672.CrossRefGoogle Scholar
  50. Nath A., Ghosh S., Chowdhury R. & Bhattacharjee C. 2012a. Can whey-based Bacillus safensis JUCHE 1 become a food supplement? Growth kinetics, probiotic activity, sensitivity to natural and synthetic antibiotics and synergy with pre-biotics and natural antioxidants. ICRASE 2012, Hyderabad, AndhraPradesh, India, 30-31 October 2012.Google Scholar
  51. Nath A., Sarkar S., Maitra M., Bhattacharjee C. & Chowdhury R. 2012b. An experimental study on production of intracellular β-galactosidase at different conditions by batch process using isolated Bacillus safensis (JUCHE 1) and characterization of synthesized β-galactosidase. J. Inst. Eng. India Ser. E 93: 55–60.CrossRefGoogle Scholar
  52. Onyambu M.O., Chepkwony H.K., Thoithi G.N., Ouya G.O. & Osanjo G.O. 2013. Microbial quality of unregulated herbal medicinal products in Kenya. Afr. J. Pharmacol. Therapeut. 2: 70–75.Google Scholar
  53. Pascon R.C., Bergamo R.F., Spinelli R.X., Souza E.D., Assis D.M., Juliano L. & Vallim M.A. 2011. Amylolytic microorganism from Sao Paulo Zoo composting: Isolation, identification, and amylase production. Enzyme Res. 2011: 1–8.CrossRefGoogle Scholar
  54. Porob S., Nayak S., Fernandes A., Padmanabhan P., Patil B.A., Meena R.M. & Ramaiah N. 2013. PCR screening for the sur-factin (sfp) gene in marine Bacillus strains and its molecular characterization from Bacillus tequilensis NIO11. Turk. J. Biol. 37: 212–221.Google Scholar
  55. Probst A., Mahnert A., Weber C., Haberer K. & Moissl-Eichinger C. 2012. Detecting inactivated endospores in fluorescence microscopy using propidiummonoazide. Int. J. Astrobiol. 11: 117–123.CrossRefGoogle Scholar
  56. Radha T.K. & Rao D.L.N. 2014. Plant growth promoting bacteria from cow dung based biodynamic preparations. Indian J. Microbiol. 54: 413–418.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Raja C.E. & Omine K. 2012. Arsenic, boron and salt resistant Bacillus safensis MS11 isolated from Mongolia desert soil. Afr. J. Biotechnol. 11: 2267–2275.Google Scholar
  58. Reza K.M., Ashrafalsadat N., Reza R.M., Taher N. & Ali N. 2014. Isolation and molecular identification of extracellular lipase-producing Bacillus species from soil. Annals Biol. Res. 5: 132–139.Google Scholar
  59. Roohi A., Ahmed I., Khalid N., Iqbal M. & Jamil M. 2014. Isolation and phylogenetic identification of halotolerant/halophilic bacteria from the salt mines of Karak, Pakistan. Int. J. Agric. Biol. 16: 564–570.Google Scholar
  60. Rosenberg E. & Ron E.Z. 1999. High- and low-molecularmass microbial surfactants. Appl. Microbiol. Biotechnol. 52: 154–162.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Saisa-Ard K., Maneerat S. & Saimmai A. 2013. Isolation and characterization of biosurfactants-producing bacteria isolated from palm oil industry and evaluation for biosurfactants production using low-cost substrates. J. Biotechnol. Comput. Biol. Bionanotechnol. 94: 275–284.Google Scholar
  62. Satomi M., Myron T., Due L. & Venkateswaran K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. Int. J. Sys. Evol. Microbiol. 56: 1735–1740.CrossRefGoogle Scholar
  63. Singh R.S. & Singh R.P. 2014. Response surface optimization of endoinulinase production from a cost effective substrate by Bacillus safensis AS-08 for hydrolysis of inulin. Biocatalysis Agric. Biotechnol. 3: 365–372.CrossRefGoogle Scholar
  64. Singh R.S., Singh R.P. & Yadav. M. 2013. Molecular and biochemical characterization of a new endoinulinase producing bacterial strain of Bacillus safensis AS-08. Biologia 68: 1028–1033.Google Scholar
  65. Souza S.A., Xavier A.A., Costa M.R. & Cardoso A.M.S. 2013. Endophytic bacterial diversity in banana ‘Prata Ana’ (Musa spp.) roots. Gen. Mol. Biol. 36: 252–264.CrossRefGoogle Scholar
  66. Strange R.N. & Scott P.R. 2005. Plant disease: a threat to global food security. Annu. Rev Phytopathol. 43: 83–116.PubMedCrossRefPubMedCentralGoogle Scholar
  67. Suganya T., Pandiarajan J., Arunprasanna V., Shanmugam P & Krishnan M. 2013. Census of cultivable bacteria community in common effluent treatment plant (CETP) of tannery discharge and computational scrutiny on their leading residents. Bioinformation 9: 101–105.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Sun H., He Y., Xiao Q., Ye R. & Tian Y. 2013. Isolation, characterization, and antimicrobial activity of endophytic bacteria from Polygonum, cuspidatum. Afr. J. Microbiol. Res. 7: 1496–1504.CrossRefGoogle Scholar
  69. Tirumalai M.R., Rastogi R., Zamani N., Williams E.O., Allen S., Diouf F., Kwende S., Weinstock G.M., Venkateswaran K.J. & Fox G.E. 2013. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores. PLoS ONE 8: e66012.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Tomova I., Lazarkevich I., Tomova A., Kambourova M. & Vasileva-Tonkova E. 2013. Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Mangura Cave, Bulgaria. Int. J. Speleol. 42: 65–76.CrossRefGoogle Scholar
  71. Velezmoro C., Ramos E., Garcia C. & Zuniga D. 2012. Genotypic identification of sp. isolated from canned white asparagus during the production/processing chain in Northern Peru. Ann. Microbiol. 63: 1207–1217.CrossRefGoogle Scholar
  72. Weisskopf L. 2013. The potential of bacterial volatiles for crop protection against phytophathogenic fungi, pp. 1352–1363. In: Mendez-Vilas A. (ed.) Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. Formatex.Google Scholar
  73. Yadav S., Kaushik R., Saxena A.K. & Arora D.K. 2011. Genetic and functional diversity of Bacillus strains in the soils long-term irrigated with paper and pulp mill effluent. J. Gen. Appl. Microbiol. 57: 183–195.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Yang L., Maeda H., Yoshikawa T. & Zhou G. 2012. Algicidal effect of bacterial isolates of Pedobacter sp. against cyanobacterium Microcystis aeruginosa. Water Sci. Eng. 5: 375–382.Google Scholar
  75. Zhang S., White T.L., Martinez M.C., Mclnroy J.A., Kloepper J.W. & Klassen W. 2010. Evaluation of plant growth-promoting rhizobacteria for control of phytophthora blight on squash under greenhouse conditions. Biological Control 53: 129–135.CrossRefGoogle Scholar
  76. Zheng F., Liu H., Sun X., Qu L., Dong S. & Liu J. 2012. Selection, identification and application of antagonistic bacteria associated with skin ulceration and peristome tumescence of cultured sea cucumber. Aquaculture 334-337: 24–29.CrossRefGoogle Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  • Agbaje Lateef
    • 1
    Email author
  • Isiaka Adedayo Adelere
    • 1
    • 2
  • Evariste Bosco Gueguim-Kana
    • 3
  1. 1.Microbiology Unit, Department of Pure and Applied BiologyLadoke Akintola University of TechnologyOgbomosoNigeria
  2. 2.Department of MicrobiologyFederal University of TechnologyMinnaNigeria
  3. 3.School of Life Science, Department of MicrobiologyUniversity of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations