Advertisement

Biologia

, Volume 70, Issue 4, pp 495–503 | Cite as

Comparison of plant and snail diversity patterns in the White Carpathian Mts (Czech Republic) across forest and grassland habitats

  • Jana Dvořáková
  • Michal HorsákEmail author
Article

Abstract

The Bílé Karpaty Mountains belong to the best-explored areas of the Czech Republic for both land snails and vascular plants, providing a unique opportunity for cross-taxa comparison of their diversity patterns. A total of 1,181 plant and 101 snail species, recorded in 45 grid cells of 2.8 × 3.1 km in size, were used for the analysis. We aimed to investigate the responses of forest and grassland assemblages separately, and to determine relative roles of environmental and spatial predictors on the compositional variation. We observed no significant correlation between the number of plant and snail species across the cells. While land snails showed a negative response to human-made habitats, a positive response was found for plants due to a high proportion of species confined to disturbed and ruderal habitats. Such differences can be attributed to different species pools of forest and grassland species and a high sensitivity of most land snails to habitat degradation and deforestation. In contrast, a positive correlation was found between grassland species as both groups positively responded to the same variables related to habitat diversity. Using the variance partitioning approach, we found a notably higher importance of spatial variables for grassland and forest plant assemblages, in contrast to snail assemblages, which were driven mainly by environmental conditions. These differences emerged especially for grasslands, most likely due to a long-term survival of several relict steppe plants and a notably higher species pool of grassland plants than that of snails.

Key words

environmental factors gastropods geographical patterns variation partitioning vascular plants woodlands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are very grateful to Ivana Jongepierová, Zdenka Preislerová and Vilém Pechanec for providing botanical and environmental data, Ondřej Hájek for preparing the map and to Michal Hájek, Veronika Horsáková and Robert Cameron for useful improvements of the first draft. One anonymous referee made several useful comments to the previous version of the manuscripts. Preparation of the manuscript was funded by the Ministry of Environment (VaV MŽP SP/2d3/54/07) and Ministry of Education of the Czech Republic (MUNI/A/0757/2012).

References

  1. Baur B., Cremene C., Groza G., Rakosy L., Schileyko A., Baur A., Stoll P. & Erhardt A. 2006. Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biol. Conserv. 132(2): 261–273. DOI: 10.1016/j.biocon.2006.04.018CrossRefGoogle Scholar
  2. Baur B., Joshi J., Schmid B., Hänggi A., Borcard D., Starý J., Pedroli-Christen A., Thommen G.H., Luka H., Rusterholz H.P., Oggier P., Ledergerber S. & Erhardt A. 1996. Variation in species richness of plants and diverse groups of invertebrates in three calcareous grasslands of the Swiss Jura mountains. Rev. Suisse Zool. 103(4): 801–833.CrossRefGoogle Scholar
  3. Borcard D., Legendre P. & Drapeau P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055. DOI: http://dx.doi.org/10.2307/1940179CrossRefGoogle Scholar
  4. Braschler B., Zschokke S., Dolt C., Thommen G.H., Oggier P. & Baur B. 2004. Grain-dependent relationships between plant productivity and invertebrate species richness and biomass in calcareous grasslands. Basic Appl. Ecol. 5(1): 15–24. DOI: 10.1078/1439-1791-00184CrossRefGoogle Scholar
  5. Cameron R.A.D. & Pokryszko B.M. 2005. Estimating the species richness and composition of land mollusc communities: problems, consequences and practical advice. J. Conchol. 38: 529–547.Google Scholar
  6. Chambers J.M. 1992. Linear models, pp. 95–144. In: Chambers J.M. & Hastie T.J. (eds), Statistical Models in S, Wadsworth & Brooks/Cole, Pacific Grove, California, 624 pp. ISBN: 0-412-05291-1.Google Scholar
  7. Chytry M. (ed.) 2009. Vegetace České republiky 2. Ruderální, plevelová, skalní a sutová vegetace. Academia, Praha, 524 pp. ISBN: 978-80-200-1769-7Google Scholar
  8. Chytrý M., Danihelka J., Horsák M., Koči M., Kubešová S., Lososová Z., Otýpková Z., Tichý L., Martynenko V.B. & Baisheva E.Z. 2010. Modern analogues from the Southern Urals provide insights into biodiversity change in the early Holocene forests of Central Europe. J. Biogeogr. 37(4): 767–780. DOI: 10.1111/j.1365-2699.2009.02256.xCrossRefGoogle Scholar
  9. Cook R.D. 1977. Detection of influential observation in linear regression. Technometrics 19(1): 15–18.Google Scholar
  10. Chrtek J. Jr. & Kaplan Z. 2012. Checklist of vascular plants of the Czech Republic. Preslia 84: 647–811.Google Scholar
  11. Dray S., Legendre P. & Peres-Neto P.R. 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196 (3-4): 483–493. DOI: 10.1016/j.ecolmodel.2006.02.015CrossRefGoogle Scholar
  12. Dvořáková J. & Horsák M. 2012. Variation of snail assemblages in hay meadows: disentangling predictive power of abiotic environment and vegetation. Malacologia 55(1): 151–162. DOI: http://dx.doi.org/10.4002/040.055.0110CrossRefGoogle Scholar
  13. Dvořáková J., Ložek V., Horsák M. & Pechanec V. 2011. Atlas rozšíření suchozemských plžů v CHKO Bílé Karpaty. Acta Carpathica Occidentalis, Suppl. 1, Vsetin, 124 pp. ISBN: 978-80-87614-00-6Google Scholar
  14. Essl F., Dullinger S., Plutzar C., Willner W. & Rabitsch W. 2011. Imprints of glacial history and current environment on correlations between endemic plant and invertebrate species richness. J. Biogeogr. 38(3): 604–614. DOI: 10.1111/j.1365-2699.2010.02425.xCrossRefGoogle Scholar
  15. Futák P., Šimša M., Piro Z. & Jongepierová I. 2008. Historie obhospodařování, pp. 38–45. In: Jongepierova I. (ed.), Louky Bílých Karpat, ZO ČSOP Bílé Karpaty, Veselí nad MoravouGoogle Scholar
  16. Hájek M., Horsák M., Tichý L., Hájková P., Dítě D. & Jamri-chová E. 2011. Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach. J. Biogeogr. 38(4): 742–755. DOI: 10.1111/j.1365-2699.2010.02424.xCrossRefGoogle Scholar
  17. Hájková P., Roleček J., Hájek M., Horsák M., Fajmon K., Polák M. & Jamrichová E. 2011. Prehistoric origin of the extremely species-rich semidry grasslands in the Bílé Karpaty Mts (Czech Republic and Slovakia). Preslia 83: 185–204.Google Scholar
  18. Horsák M. & Hájek M. 2003. Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor-rich gradient. J. Mollusc. Stud. 69(4): 349–357. DOI: 10.1093/mollus/69.4.349CrossRefGoogle Scholar
  19. Horsák M., Hájek M., Dítě D. & Tichý L. 2007. Modern distribution patterns of snails and plants in the Western Carpathian spring fens: is it a result of historical development? J. Mollusc. Stud. 73(1): 53–60. DOI: 10.1093/mollus/eyl024CrossRefGoogle Scholar
  20. Horsák M., Hájek M., Spitale D., Hájkova P., Dítě D. & Nekola J.C. 2012. The age of island-like habitats impacts habitat specialist species richness. Ecology 93(5): 1106–1114. DOI: http://dx.doi.Org/10.1890/0012-9658-93.5.1106CrossRefGoogle Scholar
  21. Horsák M., Juřičková L. & Picka J. 2013a. Měkkýši České a Slovenské republiky. Molluscs of the Czech and Slovak Republics. Kabourek, Zlin, 270 pp.Google Scholar
  22. Horsák M., Lososová Z., Čejka T., Juřičková L. & Chytrý M. 2013b. Diversity and biotic homogenization of urban land-snail faunas in relation to habitat types and macroclimate in 32 Central European cities. PLOS ONE 8 (8): e71783. DOI: 10.1371/journal.pone.0071783CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jongepier J.W. & Jongepierová I. (eds). 2006. Komentovaný seznam cévnatých rostlin Bílých Karpat. ZO ČSOP Bílé Karpaty, Veselí nad Moravou, 110 pp. ISBN: 80-903444-2-9Google Scholar
  24. Jongepier J.W. & Pechanec V. (eds). 2006. Atlas rozšíření cévnatých rostlin CHKO Bílé Karpaty. ZO ČSOP Bílé Karpaty, Veselí nad Moravou, 208 pp. ISBN: 80-903444-1-0Google Scholar
  25. Kromrey J.D. & Hines C.V. 1995. Use of empirical estimates of shrinkage in multiple regression: a causion. Educ. Psychol. Meas. 55(6): 901–925. DOI: 10.1177/0013164495055006001CrossRefGoogle Scholar
  26. Kubát K., Hrouda L., Chrtek J. Jr., Kaplan Z., Kirschner J. & Štěpánek J. (eds) 2002. Klíč ke květeně České republiky. Academia, Praha, 928 pp. ISBN: 80-200-0836-5Google Scholar
  27. Legendre P. & Gallagher E.D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129(2): 271–280. DOI: 10.1007/s004420100716CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lisický J.M. 1991. Mollusca Slovenska. Veda, Bratislava, 344 pp. ISBN: 80-224-0232-XGoogle Scholar
  29. Ložek V. 1964. Quartärmollusken der Tschechoslowakei. Rozpravy Ústředního ústavu geologického 31: 1–374.Google Scholar
  30. Ložek V. 2008. Vývoj v době poledové, pp. 24-28. In: Jongepierová I. (ed.), Louky Bílých Karpat, ZO ČSOP Bílé Karpaty, Veselí nad MoravouGoogle Scholar
  31. Magnin F., Tatoni T., Roche P. & Baudry J. 1995. Gastropod communities, vegetation dynamics and landscape changes along an old-field succession in Provence, France. Landscape and Urban Planning 31: 249–257. DOI: 10.1016/0169-2046(94)01049-ECrossRefGoogle Scholar
  32. Martin K. & Sommer M. 2004. Effect of soil properties and land management on the structure of grassland snail assemblages in SW Germany. Pedobiologia 48(3): 193–203.CrossRefGoogle Scholar
  33. Mašát K., Němeček J. & Tomiška Z. 2002. Metodika vymezování a mapování bonitovaných půdně ekologických jednotek. VU-MOP, Praha, 113 pp. ISBN: 80-238-9095-6.Google Scholar
  34. Míková T. Valeriánová A. & Voženílek V. 2007. Atlas podnebí Česka. 1. vyd. Český hydrometeorologický ústav, Praha, Univerzita Palackého, Olomouc, 256 pp. ISBN: 978-80-86690-26-1Google Scholar
  35. Niklfeld H. 1999. Mapping the flora of Austria and the eastern Alps. Revue Valdotaine d’Histoire Naturelle, Suppl. 51: 53–62.Google Scholar
  36. Nilsson S.G., Bengtsson J. & Ås S. 1988. Habitat diversity or area per se? Species richness of woody plants, carabid beetles and land snails on islands. J. Anim. Ecol. 57(2): 685–704.CrossRefGoogle Scholar
  37. Novák P. (ed.) 1991. Synteticka půdní mapa České republiky 1:200 000. Ministerstvo zemědělství ČR, Ministerstvo život-ního prostředí ČR, Praha.Google Scholar
  38. Otýpková Z., Chytrý M., Tichý L., Pechanec V., Jongepier J.W. & Hájek O. 2011. Floristic diversity patterns in the White Carpathians Biosphere Reserve, Czech Republic. Biologia 66(2): 266–274. DOI: 10.2478/sll756-011-0004-7Google Scholar
  39. Peres-Neto P.R., Legendre P., Dray S. & Borcard D. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87(10): 2614–2625. DOI: http://dx.doi.org/10.1890/0012-9658(2006)87[2614:VPOS DM]2.0.CO;2CrossRefGoogle Scholar
  40. Poprawa D. & Nemćok J. (eds) 1988. Geological atlas of the western Outer Carpathians. Pahstwowy Instytut Geologiczny, Warszava, Poland, 16 pp.Google Scholar
  41. R Core Team 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN: 3-900051-07-0Google Scholar
  42. Rybníček, K. & Rybníčková E. 2008. Upper Holocene dry land vegetation in the Moravian Slovakian borderland (Czech and Slovak Republics). Vegetation History and Archaeobotany 17(6): 701–711. DOI: 10.1007/s00334-008-0160-zCrossRefGoogle Scholar
  43. Sádlo J., Chytrý M. & Pyšek P. 2007. Regional species pools of vascular plants in habitats of the Czech Republic. Preslia 79: 303–321.Google Scholar
  44. Saetersdal M., Gjerde I., Blom H.H., Ihlen P.G., Myrseth E.W., Pommeresche R., Skartveit J., Solhoy T. & Aas O. 2004. Vascular plants as a surrogate species group in complementary site selection for bryophytes, macrolichens, spiders, carabids, staphylinids, snails, and wood living polypore fungi in a northern forest. Biol. Conserv. 115(1): 21–31. DOI: 10.1016/S0006-3207(03)00090-9CrossRefGoogle Scholar
  45. Sillinger P. 1929. Bílé Karpaty. Nástin geobotanických poměrů se zvláštním zřetelem ke společenstvům rostlinným. Rozpravy Královské České Společnosti Nauk, Tř. mat.-přírodovédecká. Nová řada 3, 69 pp.Google Scholar
  46. Škodová I., Hájek M., Chytrý M., Jongepierová I. & Knollová I. 2008. Vegetace, pp. 128-177. In: Jongepierová I. (ed.), Louky Bílých Karpat, ZO ČSOP Bílé Karpaty, Veselí nad MoravouGoogle Scholar
  47. ter Braak C.J.F. & Šmilauer P. 2012. CANOCO reference manual and user’ guide: software for ordination (version 5.0). Biometris, Wageningen, 496 pp.Google Scholar

Copyright information

© Slovak Academy of Sciences 2015

Authors and Affiliations

  1. 1.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations