Acta Parasitologica

, Volume 63, Issue 2, pp 386–392 | Cite as

Evaluation of four commercial DNA extraction kits for the detection of Microsporidia and the importance of pretreatments in DNA isolation

  • Ülfet ÇetinkayaEmail author
  • Arzuv Charyyeva
  • Eda Sivcan
  • Esra Gürbüz


Microsporidia are obligate intracellular parasitic protozoa infecting the wide variety of hosts and are commonly known as a cause of chronic diarrhea particularly in immunocompromised individuals. Molecular-based tests have high sensitivity and specificity in disease diagnosis. However, these tests’ performance relies on the isolation of DNA in a good concentration. The standard procedures of commercial DNA extraction kits are usually insufficient for this purpose due to the tough walls of spores. This study aimed to test the significance of pretreatments by glass beads and freeze-thawing processes in DNA isolation from microsporidia spores. The parasite was cultured in growing Vero cells and seven serial dilutions were prepared from the collected spores. DNA purification was performed according to different tissue kits and stool kit procedures with and without any pretreatment. Concentration of isolated DNA samples were evaluated by real-time PCR. As a result of this study, the detectable amount of spores is minimum 10 spores in each 100 μl sample according to the different tissue kits’ standard protocols. However, according to the DNA stool mini kit, the detectable amount of spores was found to be 1,000 spores/100 μl of stool sample when pretreated with both the freeze-thawing and glass beads methods.In conclusion, the current study demonstrated that further pretreatments are an essential process for DNA extraction from the stool specimens in order to avoid possible false negativity in the diagnosis of microsporidiosis.


Microsporidia DNA extraction freeze-thawing glass beads pretreatment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariefdjohan, M.W., Savaiano, D.A., Nakatsu C.H. 2010. Comparison of DNA extraction kits for PCR-DGGE analysis of human intestinal microbial communities from fecal specimens. Nutrition Journal, 9, 23. DOI: 10.1186/1475-2891-9-23CrossRefGoogle Scholar
  2. Babaei, Z., Oormazdi, H., Rezaie, S., Rezaeian, M., Razmjou E. 2011. Giardia intestinalis: DNA extraction approaches to improve PCR results. Experimental Parasitology, 128, 159–162. DOI: 10.1016/j.exppara.2011.02.001CrossRefGoogle Scholar
  3. Cetinkaya, U., Yazar, S., Kuk, S., Sivcan, E., Kaynar, L., Arslan, D., Sahin I. 2016. The high prevalence of Encephalitozoon intestinalis in patients receiving chemotherapy and children with growth retardation and the validity of real-time PCR in its diagnosis. Turkısh Journal Of Medıcal Scıences, 46, 1050–1058. DOI:10.3906/sag-1504-69CrossRefGoogle Scholar
  4. Curry A. 2005. Microsporidiosis. In: Cox FEG, Wakelin D, Gillespie SH, Despommier, DD. (Eds Topley and Wilson’s) Microbiology and Microbial Infections. Washington, DC: ASM Press, 529–555Google Scholar
  5. Franzen, C., Muller A. 2001. Microsporidiosis: human diseases and diagnosis. Microbes and Infection, 3, 389–400CrossRefGoogle Scholar
  6. Garcia L.S. (Ed.) 2007. Diagnostic medical parasitology. Washington DC: ASM Press, pp. 33–46Google Scholar
  7. Ghosh, K., Weiss L.M. 2009. Molecular diagnostic tests for microsporidia. Interdisciplinary Perspectives on Infectious Diseases, 2009, 926521. DOI:10.1155/2009/926521CrossRefGoogle Scholar
  8. Hawash Y. 2014. DNA Extraction from Protozoan Oocysts/Cysts in Feces for Diagnostic PCR. Korean Journal of Parasitology, 52, 263–271. DOI: 10.3347/kjp.2014.52.3.263CrossRefGoogle Scholar
  9. Joseph, J., Sharma S. 2009. In vitro culture of various species of microsporidia causing keratitis: evaluation of three immortalized cell lines. Indian journal of medical microbiology, 27, 35–39PubMedGoogle Scholar
  10. Lelu, M., Gilot-Fromont, E., Aubert, D., Richaume, A., Afonso, E., Dupuis, E., et al. 2011. Development of a sensitive method for Toxoplasma gondii oocyst extraction in soil. Veterinary Parasitology, 183, 59–67. DOI: 10.1016/j.vetpar.2011.06.018CrossRefGoogle Scholar
  11. Mirjalali, H., Mohebali, M., Mirhendi, H., Gholami, R., Keshavarz, H., Meamar, A.R., Rezaeian M. 2014. Emerging Intestinal Microsporidia Infection in HIV(+)/AIDS Patients in Iran: Microscopic and Molecular Detection. Iranian Journal of Parasitology, 9, 149–154PubMedPubMedCentralGoogle Scholar
  12. Paulos, S., Mateo, M., de Lucio, A., Hernandez-de Mingo, M., Bailo B., Saugar, J.M., et al. 2016. Evaluation of five commercial methods for the extraction and purification of DNA from human faecal samples for downstream molecular detection of the enteric protozoan parasites Cryptosporidium spp., Giardia duodenalis, and Entamoeba spp. Journal of Microbiological Methods, 127, 68–73. DOI: 10.1016/j.mimet.2016.05.020CrossRefGoogle Scholar
  13. Pessoa E.S.R., Mendonca Trajano-Silva, L.A., Lopes da Silva, M.A., da Cunha Goncalves-de-Albuquerque, S., de Goes, T.C., Silva de Morais, R.C., et al. 2016. Evaluation of urine for Leishmania infantum DNA detection by real-time quantitative PCR. Journal of Microbiological Methods, 131, 34–41. DOI: 10.1016/j.mimet.2016.10.002CrossRefGoogle Scholar
  14. Pinar, A., Akyon, Y., Alp, A., Erguven S. 2010. Adaptation of a sensitive DNA extraction method for detection of Entamoeba histolytica by real-time polymerase chain reaction. Mikrobiyoloji Bulteni, 44, 453–159PubMedGoogle Scholar
  15. Polley, S.D., Boadi, S., Watson, J., Curry, A., Chiodini P.L. 2011. Detection and species identification of microsporidial infections using SYBR Green real-time PCR. Journal of Medical Microbiology, 60, 459–466. DOI: 10.1099/jmm.0.026781-0CrossRefGoogle Scholar
  16. Procop G.W. 2007. Molecular diagnostics for the detection and characterization of microbial pathogens. Clinical Infectious Diseases, 45, 99–111CrossRefGoogle Scholar
  17. Qi, M., Wang, H., Jing, B., Wang, R., Jian, F., Ning, C., Zhang L. 2016. Prevalence and multilocus genotyping of Giardia duodenalis in dairy calves in Xinjiang, Northwestern China. Parasites & Vectors, 9, 546. DOI: 10.1186/s13071-016-1828-3CrossRefGoogle Scholar
  18. Subrungruang, I., Mungthin, M., Chavalitshewinkoon-Petmitr, P., Rangsin, R., Naaglor, T., Leelayoova S. 2004. Evaluation of DNA extraction and PCR methods for detection of Enterocytozoon bienuesi in stool specimens. Journal of Clinical Microbiology, 42, 3490–3494CrossRefGoogle Scholar
  19. Weber, R., Bryan, R.T., Schwartz, D.A., Owen R.L. 1994. Human microsporidial infections. Clinical Microbiology Reviews, 7, 426–461CrossRefGoogle Scholar
  20. Weiss, L.M., Vossbrinck C.R. 1998. Microsporidiosis: molecular and diagnostic aspects. Advances in Parasitology, 40, 351–395CrossRefGoogle Scholar
  21. Yazar, S., Koru, O., Hamamcı B., Cetinkaya, U., Karaman, U., Kuk S. 2013. Microsporidia and microsporidiosis. Turkiye Parazitoloji Dergisi, 37, 123–134. DOI: 10.5152/tpd.2013.28CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2018

Authors and Affiliations

  • Ülfet Çetinkaya
    • 1
    Email author
  • Arzuv Charyyeva
    • 2
    • 3
  • Eda Sivcan
    • 3
  • Esra Gürbüz
    • 3
  1. 1.Halil Bayraktar Health Vocational CollegeErciyes UniversityKayseriTurkey
  2. 2.Life Science Research Centre, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
  3. 3.Department of Parasitology, Faculty of MedicineErciyes UniversityKayseriTurkey

Personalised recommendations