Evaluation of the protective effect of a prime-boost strategy with plasmid DNA followed by recombinant adenovirus expressing BmAMA1 as vaccines against Babesia microti infection in hamster
Abstract
In the present study, we have investigated the protective effect of a heterologous prime-boost strategy with priming plasmid DNA followed by recombinant adenovirus, both expressing BmAMA1, against Babesia microti infection. Four groups consisting of 3 hamsters per group were immunized with pBmAMA1/Ad5BmAMA1, pNull/Ad5BmAMA1, pBmAMA1/Ad5Null and pNull/Ad5Null, followed by challenge infection with B. microti. Our results showed that hamsters immunized with plasmid and adenovirus expressing BmAMA1 developed a robust IgG and IgG2a antibody response against BmAMA1, suggesting the DNA vaccine or viral vector vaccine tend to induce a Th1-biased response. Compared to the control hamsters, the hamsters vaccinated either with the prime-boost strategy or one of the two “vaccines” exhibited no significant protection against B. microti challenge. Although a slight difference in terms of parasitemia and hematocrit values at days 14–16 post challenge infection was observed, no other statistical difference was detected. Our results indicate that the prime-boost vaccination strategy of injection of plasmid and adenovirus expressing BmAMA1 is not efficient in protecting against B. microti infection.
Keywords
Babesia microti DNA vaccine Adenovirus Heterologous prime-boost BmAMA1Preview
Unable to display preview. Download preview PDF.
References
- Mountford, A.P., Fisher, A., Wilson, R.A., 1994. The profile of lgCl and IgC2a antibody responses in mice exposed to Schistosoma mansoni. Parasite Immunology, 16, 521–527CrossRefGoogle Scholar
- Anderson, R.J., Schneider, J., 2007. Plasmid DNA and viral vectorbased vaccines for the treatment of cancer. Vaccine 25, 24–34. DOI: 10.1016/j.vaccine.2007.05.030CrossRefGoogle Scholar
- Caetano, B.C., Bruña-romero, O., Fux, B., Mendes, E.A., Penido M.L.O., Gazzinelli, R.T., 2006. Vaccination with Replication-Deficient Recombinant Adenoviruses Encoding the Main Surface Antigens of Toxoplasma gondii Induces Immune Response and Protection Against Infection in Mice. Human Gene Therapy 17, 415–426CrossRefGoogle Scholar
- Campos-Neto, A., 2005. What about Th1/Th2 in cutaneous leishmaniasis vaccine discovery? Brazilian Journal of Medical and Biological Research, 38, 979–984CrossRefGoogle Scholar
- Dunachie, S.J., Hill A.V.S., 2003. Review Prime-boost strategies for malaria vaccine development. The Journal of Experimental Biology, 206, 3771–3779. DOI: 10.1242/jeb.00642CrossRefGoogle Scholar
- Dutta, S., Sullivan, J.S., Grady, K.K., Haynes, J.D., Komisar, J., Adrian H., et al., 2009. High Antibody Titer against Apical Membrane Antigen-1 Is Required to Protect against Malaria in the Aotus Model PLoS One 4, e8138. DOI: 10.1371/journal.pone.0008138Google Scholar
- Harvey, K.L., Yap, A., Gilson, P.R., Cowman, A.F., Crabb, B.S., 2014. Insights and controversies into the role of the key apicomplexan invasion ligand, Apical Membrane Antigen 1. International Journal for Parasitology, 44, 853–857. DOI:10.1016/j.ijpara.2014.08.001CrossRefGoogle Scholar
- Hildebrandt, A., Hunfeld, K.P., Baier, M., Krumbholz, A., Sachse, S., Lorenzen, T., et al., 2007. First confirmed autochthonous case of human Babesia microti infection in Europe. European Journal of Clinical Microbiology & Infectious Diseases. 26, 595–601. DOI:10.1007/s10096-007-0333-1CrossRefGoogle Scholar
- Homer, M.J., Aguilar-Delfin, I., Telford, S.R., Krause, P.J., Persing D.H., 2000. Babesiosis. Clinical Microbiology Reviews, 13, 451–69. DOI: 10.1128/CMR.13.3.451-469.2000.CrossRefGoogle Scholar
- Igarashi, I., Suzuki, R., Waki, S., Tagawa Y.-I., Seng, S., Tum, S., et al., 1999. Roles of CD4+ T Cells and Gamma Interferon in Protective Immunity against Babesia microti Infection in Mice. Infection and Immunity. 67, 4143–4148PubMedPubMedCentralGoogle Scholar
- Indresh, K.S., Margaret, A.L., 2013. Gene Vaccines. Ann. Annals of Internal Medicine, 138, 550–559Google Scholar
- Kochan, G., Gherardi, M.M., Esteban, M., Pe, E., 2006. MVA-LACK as a safe and efficient vector for vaccination against leishmaniasis. Microbes and Infection, 8, 810–822. DOI: 10.1016/j.micinf.2005.10.004CrossRefGoogle Scholar
- Krause, P.J., Gewurz, B.E., Hill, D., Marty, F.M., Vannier, E., Foppa I.M., et al., 2008. Persistent and relapsing babesiosis in immunocompromised patients. Clinical Infectious Diseases, 46, 370–376. DOI: 10.1086/525852CrossRefGoogle Scholar
- Kumar, S., Gubernot, D.M., Nakhasi, H.L., Mied, P.A., Asher, D.M., Epstein, J.S., 2009. Transfusion-transmitted babesiosis in the United States: Summary of a workshop. Transfusion, 49, 2759–2771. DOI: 10.1111/j.1537-2995.2009.02429.xCrossRefGoogle Scholar
- Liu, M.A., Ulmer, J.B., 2005. Human Clinical Trials of Plasmid DNA Vaccines. Advances in Genetics. 55, 25–40. DOI: 10.1016/S0065-2660(05)55002-8CrossRefGoogle Scholar
- Marathe A, Tripathi J, Handa V, Date V. 2005. Human babesiosis–A case report. Indian Journal of Medical Microbiology, 23, 267–269PubMedGoogle Scholar
- Moitra, P., Zheng, H., Anantharaman, V., Banerjee, R., Takeda, K., Kozakai, Y., et al. 2015. Expression, purification, and biological characterization of Babesia microti apical membrane antigen 1. Infection and Immunity, 83, 3890–3901. DOI: 10.1128/IAI.00168-15CrossRefGoogle Scholar
- Ramshaw, I.A., Ramsay, A.J., 2000. The prime-boost strategy: exciting prospects for improved vaccination. Immunology Today, 21Google Scholar
- Reyes-Sandoval, A., John, T., Todryk, S.M., 2007. Viral vector vaccines make memory T cells against malaria. Immunology 121, 158–165. DOI: 10.1111/j.1365-2567.2006.02552.xCrossRefGoogle Scholar
- Stowers, A.W., Kennedy, M.C., Keegan, B.P., Saul, A., Long, C.A., Miller, L.H., Mmun I.N.I., 2002. Vaccination of Monkeys with Recombinant Plasmodium falciparum Apical Membrane Antigen 1 Confers Protection against Blood-Stage Malaria. Infection and Immunity 86, 6961–6967. DOI: 10.1128/IAI.70.12.6961CrossRefGoogle Scholar
- Takeda, A., Igarashi, H., Nakamura, H., Kano, M., Iida, A., Hirata, T., et al., 2003. Protective Efficacy of an AIDS Vaccine, a Single DNA Priming Followed by a Single Booster with a Recombinant Replication-Defective Sendai Virus Vector, in a Macaque AIDS Model. Journal of Virology 92, 9710–9715. DOI: 10.1128/JVI.77.17.9710Google Scholar
- Vannier, E., Gewurz, B.E., Krause, P.J., 2008. Human Babesiosis. Infectious Disease Clinics of North America 22. DOI: 10.1016/j.idc.2008.03.010CrossRefGoogle Scholar
- Wang, G., Efstratiou, A., Franck, P., Moumouni, A., Liu, M., 2017. Experimental Parasitology Expression of truncated Babesia microti apical membrane protein 1 and rhoptry neck protein 2 and evaluation of their protective efficacy. Experimental Parasitology. 172, 5–11. DOI: 10.1016/j.exppara.2016.11.001CrossRefGoogle Scholar
- Woodland, D.L., 2004. Jump-starting the immune system: prime–boosting comes of age. Trends in Immunology, 25. DOI: 10.1016/j.it.2003.11.009CrossRefGoogle Scholar
- Yu, L., Yamagishi, J., Zhang, S., Jin, C., Oluga, G., 2012. Parasitology International Protective effect of a prime-boost strategy with plasmid DNA followed by recombinant adenovirus expressing TgAMA1 as vaccines against Toxoplasma gondii infection in mice. Parasitology International, 61, 481–486. DOI: 10.1016/j.parint.2012.04.001CrossRefGoogle Scholar
- Zhang, G., Huang, X., Boldbaatar, D., Battur, B., 2010. Construction of Neospora caninum stably expressing TgSAG1 and evaluation of its protective effects against Toxoplasma gondii infection in mice. Vaccine, 28, 7243–7247. DOI: 10.1016/j.vaccine.2010.08.096CrossRefGoogle Scholar