Advertisement

Acta Parasitologica

, Volume 63, Issue 2, pp 304–316 | Cite as

Patterns of the parasite communities in a fish assemblage of a river in the Brazilian Amazon region

  • Raimundo Rosemiro Jesus Baia
  • Alexandro Cezar Florentino
  • Luís Maurício Abdon Silva
  • Marcos Tavares-DiasEmail author
Article

Abstract

This paper characterizes the pattern of ectoparasite and endoparasite communities in an assemblage of 35 sympatric fish from different trophic levels in a tributary from the Amazon River system, northern Brazil. In detritivorous, carnivorous, omnivorous and piscivorous hosts, the species richness consisted of 82 ectoparasites and endoparasites, but protozoan ectoparasites such as Ichthyophthirius multifiliis, Piscinoodinium pillulare and Tripartiella sp. were dominant species predominated, such that they were present in 80% of the hosts. The taxon richness was in the following order: Monogenea > Nematoda > Digenea > Crustacea > Protozoa > Acanthocephala = Cestoda > Hirudinea. Among the hosts, the highest number of parasitic associations occurred in Satanoperca jurupari, Aequidens tetramerus, Hoplerythrinus unitaeniatus, Hoplosternum littorale, Cichlasoma amazonarum, Chaetobranchus flavescens, Squaliforma emarginata, Chaetobranchopsis orbicularis and Hoplias malabaricus.A weak positive correlation between ectoparasite abundance and length of the hosts was observed. Ectoparasite communities of detritivorous, carnivorous and omnivorous hosts were similar, but these differed from the communities of piscivorous hosts. Larval endoparasite species with low host specificity were the main determinants of the parasite infracommunity structure of the fish assemblage. Fish assemblage had few species of helminth that were specialist endoparasites, while many were parasites at the larval stage, infecting intermediate and paratenic hosts. Finally, carnivorous and omnivorous hosts harbored endoparasite communities that were more heterogeneous than those of detritivorous and piscivorous hosts. This result lends supports to the notion that the feeding habits of the host species are a significant factor in determining the endoparasites fauna.

Keywords

Amazon Brazil trophic level parasites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, J.S., Reis R.E. 2011. Introduction to Neotropical freshwaters. In: Albert, J.S., Reis R.E. (Eds). Historical biogeography of Neotropical freshwater fishes. University of California Press, Berkeley, pp. 3–19CrossRefGoogle Scholar
  2. Alcântara, N.M., Tavares-Dias, M. 2015. Structure of the parasite communities in two Erythrinidae fish from Amazon River system (Brazil). Brazilian Journal of Veterinary Parasitolog y, 24, 183–190Google Scholar
  3. Beevi, M.R., Radhakrishnan S. 2012. Community ecology of the metazoan parasites of freshwater fishes of Kerala. Journal of Parasitic Diseases, 36, 184–196CrossRefGoogle Scholar
  4. Bellay, S., Oliveira, E.F., Almeida-Neto, M., Lima-Junior, D.P., Takemoto R. M., Luque J.L. 2013. Developmental stage of parasites influences the structure of fish-parasite networks. Plos One, 8, e75710. DOI:10.1371/journal.pone.0075710CrossRefGoogle Scholar
  5. Bellay, S., Oliveira, E.F., Almeida-Neto, M., Abdallah, V.D., Azevedo R.K., Takemoto R. M., Luque J.L. 2015. The patterns of organization and structure of interactions in a fish-parasite network of a Neotropical river. International Journal for Parasitology, 45, 549–557. DOI: http://dx.DOI.org/ 10.1016/j.ijpara.2015.03.003CrossRefGoogle Scholar
  6. Bittencourt, L.S., Pinheiro, D.A., Cárdenas, M.Q., Fernandes, B.M., Tavares-Dias M. 2014a. Parasites of native Cichlidae populations and invasive Oreochromis niloticus (Linnaeus, 1758) in tributary of Amazonas River (Brazil). Brazilian Journal of Veterinary Parasitology, 23, 44–54PubMedGoogle Scholar
  7. Bittencourt, L.S., Silva U.R.L., Silva L.M.A. Tavares-Dias M. 2014 b. Impact of the invasion from Nile tilapia on natives Cichlidae species in tributary of Amazonas River, Brazil. Biota Amazônia, 4, 88–94CrossRefGoogle Scholar
  8. Bush, A.O., Lafferty, K.D., Lotz, J.M., Shostak W. 1997. Parasitology meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology, 83, 575–583CrossRefGoogle Scholar
  9. Choudhury, A., Dick T.A. 2000. Richness and diversity of helminth communities in tropical freshwater fishes: empirical evidence. Journal of Biogeography, 27, 935–956CrossRefGoogle Scholar
  10. Dormann, C.F., Fruend, J., Bluethgen, N., Gruber B. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal, 2, 7–24CrossRefGoogle Scholar
  11. Froese, R., Pauly, D., Editors. 2017. Fish Base. World Wide Web electronic publication. www.fishbase.org, version (06/2017)Google Scholar
  12. Garcez R.C.S., Souza, L.A., Frutuoso, M.E., Freitas C.E.C. 2017. Seasonal dynamic of Amazonian small-scale fisheries is dictated by the hydrologic pulse. Boletim do Instituto da Pesca, 43, 207–221CrossRefGoogle Scholar
  13. Guégan, J.F., Lambert, A., Lévêdque, C., Combes, C., Euzet L. 1992. Can host body size explain the parasite species richness in tropical freshwater fishes? Oecologia, 90, 197–204. DOI: 10.1007/BF00317176CrossRefGoogle Scholar
  14. Grutter A.S. 1994. Spatial and temporal variations of the ectoparasites of seven reef fish species from Lizard Island and Heron Island, Australia. Marine Ecology Progress Series, 115, 21–30CrossRefGoogle Scholar
  15. Hammer, O., Harper D.A.T., Ryan P.D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9Google Scholar
  16. Hoshino M.D.F.G., Neves, L.R., Tavares-Dias M. 2016. Parasite communities of the predatory fish, Acestrorhynchus falcatus and Acestrorhynchus falcirostris, living in sympatry in Brazilian Amazon. Brazilian Journal of Veterinary Parasitology, 25, 207–216. DOI: http://dx.DOI.org/10.1590/ S1984-29612016038PubMedGoogle Scholar
  17. Junk W.J. 2013. Current state of knowledge regarding South America wetlands and their future under global climate change. Aquatic Sciences, 75, 113–131CrossRefGoogle Scholar
  18. Lafferty, K.D., Allesina, S., Arim, M., Briggs, C.J., De Leo, G., Dobson A.P., et al. 2008. Parasites in food webs: the ultimate missing links. Ecology Letters, 11, 533–546. DOI: 10.1111/j.1461-0248.2008.01174.xCrossRefGoogle Scholar
  19. Kennedy C.R. 1990. Helminth communities in freshwater fish: structured communities or stochastic assemblages? In: Esch, G.W., Busch A.O, Aho J.M. (Eds) Parasite communities: patterns and processes. Chapman and Hall, pp. 131–156CrossRefGoogle Scholar
  20. Krebs C.J. 1999. Ecological methodology. Addison-Wesley Educational Publishers, pp. 581Google Scholar
  21. Kuris, A.M., Blaustein, A.R., Alió J.J. 1980. Hosts as islands. American Naturalist, 116, 570–586CrossRefGoogle Scholar
  22. Luque, J.L., Poulin R. 2007. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity. Parasitology, 134, 865–878.CrossRefGoogle Scholar
  23. Luque, J.L., Poulin R. 2008. Linking ecology with parasite diversity in Neotropical fishes. Journal of Fish Biology, 72, 189–204. DOI:10.1111/j.1095-8649.2007.01695.xCrossRefGoogle Scholar
  24. Marcogliese D.J. 2002. Food webs and the transmission of parasites to marine fish. Parasitology, 124, 83–99CrossRefGoogle Scholar
  25. Marcogliese, D.J., Cone D.K. 1997. Food webs: a plea for parasites. Trends in Ecology & Evolution, 12, 320–325CrossRefGoogle Scholar
  26. Oksanen, J.F., Blanchet, G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara R. B., Simpson, G.L., Solymos, P., Stevens M.H.H., Szoecs, E., and Wagner H. 2017. Vegan: Community Ecology Package. R Package version 2.4–3. https://CRAN.R-project.org /package=veganGoogle Scholar
  27. Pérez-Ponce de León, Choudhury A. 2005. Biogeography of helminth parasites of freshwater fishes in Mexico: the search for patterns and processes. Journal of Biogeography, 32, 645–659CrossRefGoogle Scholar
  28. Poulin R. 2001. Another look at the richness of helminth communities in tropical freshwater fishes. Journal of Biogeography, 28, 737–743CrossRefGoogle Scholar
  29. Poulin R. 2004a. Macroecological patterns of species richness in parasite assemblages. Basic Applied Ecology, 5, 423–434CrossRefGoogle Scholar
  30. Poulin R. 2004b. Parasite species richness in New Zealand fishes: a grossly underestimated component of biodiversity? Diversity and Distributions, 10, 31–37CrossRefGoogle Scholar
  31. Poulin, R., Leung T.L.F. 2011. Body size, trophic level, and the use of fish as transmission routes by parasites. Oecologia, 166, 731–738. DOI 10.1007/s00442-011-1906-3CrossRefGoogle Scholar
  32. R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org.Google Scholar
  33. Ruehle, B.P., Herrmann, K.K., Higgins, C.L. 2017. Helminth parasite assemblages in two cyprinids with different life history strategies. Aquatic Ecology, 51, 247–256CrossRefGoogle Scholar
  34. Valtonen, E.T., Marcogliese, D.J., Julkunen M. 2010. Vertebrate diets derived from trophically transmitted fish parasites in the Bothnian Bay. Oecologia, 162, 139–152CrossRefGoogle Scholar
  35. Salgado-Maldonado, G., Novelo-Turcotte, M.T., Caspeta-Mandujano J.M., Vazquez-Hurtado, G., Quiroz-Martínez, B., Mercado-Silva, N., Favila M. 2016. Host specificity and the structure of helminth parasite communities of fishes in a Neotropical river in Mexico. Parasite, 23, 61. DOI: 10.1051/parasite/2016073CrossRefGoogle Scholar
  36. Silva, A.Q., Takiyama, L.R., Costa-Neto, S.V., Silveira O.F.M. 2009. Valoração ambiental das unidades fitoecológicas remanescentes da bacia hidrográfica do Igarapé Fortaleza. OLAM–Ciência & Tecnologia, 9, 354–384Google Scholar
  37. Takiyama, L.R., Silva, A.Q., Costa W.J.P., Nascimento H.S. 2004. Qualidade das águas das ressacas das bacias do Igarapé da Fortaleza e do Rio Curiaú. In: (Eds. Takiyama, L.R., Silva A.Q). Diagnostico das ressacas do Estado do Amapá: bacias do Igarapé da Fortaleza e Rio Curiaú, Macapá-AP. CPAQ/IEPA e DGEO/SEMA, Macapá, pp. 81–104. (In Portuguese)Google Scholar
  38. Takiyama, L.R., (et al.). 2012. Projeto zoneamento ecológico econômico urbano das áreas de ressacas de Macapá e Santana, estado do Amapá: relatório técnico final. Luis Roberto Takiyama. Macapá: IEPA, pp. 84 (In Portuguese)Google Scholar
  39. Tavares-Dias, M., Oliveira M.S.B., Gonçalves, R.A., Silva L.M.A. 2014. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitologica, 59, 158–164. DOI: 10.2478/s11686-014-0225-3CrossRefGoogle Scholar
  40. Tavares-Dias, M., Gonçalves, R.A., Oliveira M.S.B., Neves L.R. 2017. Ecological aspects of the parasites in Cichlasoma bimaculatum (Cichlidae), ornamental fish from the Brazilian Amazon. Acta Biológica Colombiana, 22, 175–180. DOI: http://dx.DOI.org/10.15446/abc.v22n2.60015CrossRefGoogle Scholar
  41. Thomaz, D.O., Costa Neto, S.V., Tostes L.C.L. 2004. Inventario florístico das ressacas das bacias do Igarapé da Fortaleza e do Rio Curiaú. In: (Eds. Takiyama, L.R., Silva A.Q). Diagnostico das ressacas do Estado do Amapá: bacias do Igarapé da Fortaleza e Rio Curiaú, Macapá-AP. CPAQ/IEPA e DGEO/SEMA, Macapá, pp. 1–22 (In Portuguese)Google Scholar
  42. Timi, J.T., Rossin, M.A., Alarcos, A.J., Braicovich, P.E., Cantatore D.M.P., Lanfranchi A.L. 2011. Fish trophic level and the +similarity of non-specific larval parasite assemblages. International Journal for Parasitology, 41, 309–316. DOI: 10.1016/j.ijpara.2010.10.002CrossRefGoogle Scholar
  43. Walker JG, Hurford A, Cable J, Ellison AR, Price SJ, Cressler, CE. 2017. Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis. Philosophical Transactions of the Royal Society B, 372, 20160089. http://dx.DOI.org/10.1098/rstb.2016.0089CrossRefGoogle Scholar
  44. Zar J.H. 2010. Biostatistical analysis. 5th ed. Prentice Hall, New Jersey, pp. 944Google Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2018

Authors and Affiliations

  • Raimundo Rosemiro Jesus Baia
    • 1
    • 2
  • Alexandro Cezar Florentino
    • 2
  • Luís Maurício Abdon Silva
    • 3
  • Marcos Tavares-Dias
    • 1
    Email author
  1. 1.Embrapa AmapáMacapáBrazil
  2. 2.Postgraduate Program on Tropical BiodiversityFederal University of AmapáMacapáBrazil
  3. 3.Institute of Scientific and Technological Research of the State of Amapá (IEPA)MacapáBrazil

Personalised recommendations