Acta Parasitologica

, Volume 63, Issue 2, pp 270–279 | Cite as

Entamoeba histolytica L220 induces the in vitro activation of macrophages and neutrophils and is modulated by neurotransmitters

  • Fabiola Rocío del Villalobos-Gómez
  • Mario García-Lorenzana
  • Galileo Escobedo
  • Patricia Talamás-Rohana
  • Rogelio Salinas-Gutiérrez
  • Verónica-Ivonne Hernández-Ramírez
  • Esperanza Sánchez-Alemán
  • María Rosario del Campos-Esparza
  • Martín Humberto Muñoz-Ortega
  • Javier Ventura-JuárezEmail author


The neuroimmunoregulation of inflammation has been well characterized. Entamoeba histolytica provokes an inflammatory response in the host in which macrophages and neutrophils are the first line of defense. The aim of this study was to analyze the effect of the 220 kDa lectin of Entamoeba histolytica on stimulation of human macrophages and neutrophils, especially the secretion of cytokines and the relation of these to neurotransmitters. Human cells were interacted with L220, epinephrine, nicotine, esmolol and vecuronium bromide. The concentrations of IL-1β, IFN-γ, TNF-α and IL-10 were determined by ELISA at, 4 h of interaction. L220 has a cytokine stimulating function of macrophages and neutrophils for secretion of IL-1β, and IL-10 only by macrophages, which was modulated by the effect of vecuronium on cholinergic receptors in this immune cells.


L220 Entamoeba histolytica neutrophils macrophages epinephrine esmolol nicotine vecuronium bromide cytokines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amulic, B., Cazalet, C., Hayes, G.L., Metzler, K.D., Zychlinsky A. 2012. Neutrophil function: from mechanisms to disease. Annual Review of Immunology, 30, 459–489. DOI: 10.1146/annurev-immunol-020711-074942CrossRefGoogle Scholar
  2. Báez-Pagán, C.A., Delgado-Vélez, A.M., Lasalde-Dominicci J.A. 2015. Activation of the Macrophage α7 Nicotinic Acetylcholine Receptor and Control of Inflammation. Journal of Neuroimmune Pharmacology: The Official Journal of the Society on NeuroImmune Pharmacology, 10, 468–476. DOI: 10.1007/s11481-015-9601-5CrossRefGoogle Scholar
  3. Bekker-Mendez, V.C., Pérez-Castillo, V.L., Rico-Rosillo, M.G., Pérez-Rodríguez, M., Arellano-Blanco, J., Kretschmer-Schmid, R.R., and Talamás-Rohana P. 2006. Downregulation of selected cytokines in amebiasis. Archives of Medical Research,37, 556–8CrossRefGoogle Scholar
  4. Blazquez, S., Zimmer, C., Guigon, G., Olivo-Marin, J.C., Guillén, N., Labruyère E. 2006. Human Tumor Necrosis Factor is a Chemoattractant for the Parasite Entamoeba histolytica. Infection and Immunity, 74, 1407. DOI: 10.1128/IAI.74.2.1407-1411.2006CrossRefGoogle Scholar
  5. Chadee, K., Meerovitch, E., Moreau F. 1985. In vitro and in vivo interaction between trophozoites of Entamoeba histolytica and gerbil lymphoid cells. Infection and Immunity, 49, 828–832PubMedPubMedCentralGoogle Scholar
  6. Diamond L. S. 1961. Axenic cultivation of Entamoeba histolytica. Science, 134, 336–337CrossRefGoogle Scholar
  7. Elenkov I. J. 2008. Neurohormonal-cytokine interactions: implications for inflammation, common human diseases and wellbeing. Neurochemistry International, 52, 40–51. DOI: 10.1016/j.neuint.2007.06.037CrossRefGoogle Scholar
  8. Engler K. L., Rudd, M.L., Ryan, J.J., Stewart, J.K., Fischer-Stenger K. 2005. Autocrine actions of macrophage-derived catecholamines on interleukin-1 beta. Journal of Neuroimmunology, 160, 87–91. DOI: 10.1016/j.jneuroim.2004.11.005CrossRefGoogle Scholar
  9. Espinosa-Cantellano, M., Martínez-Palomo A. 2000. Pathogenesis of Intestinal Amebiasis: From Molecules to Disease. Clinical Microbiology Reviews, 13, 318–331CrossRefGoogle Scholar
  10. Gahring, L.C., Osborne, A.V., Reed, M., Rogers S.W. 2010. Neuronal nicotinic alpha7 receptors modulate early neutrophil infiltration to sites of skin inflammation. Journal of Neuroinflammation, 7, 38. DOI: 10.1186/1742-2094-7-38CrossRefGoogle Scholar
  11. Geissmann, F., Manz, M.G., Jung, S., Sieweke, M.H., Merad, M., Ley K. 2010. Development of monocytes, macrophages, and dendritic cells. Science, 327, 656–661. DOI: 10.1126/science.1178331CrossRefGoogle Scholar
  12. Gersuk, G.M., Razai, L.W., Marr K.A. 2008. Methods of in vitro macrophage maturation confer variable inflammatory responses in association with altered expression of cell surface dectin-1. Journal of Immunological Methods, 329, 157–166. DOI: 10.1016/j.jim.2007.10.003CrossRefGoogle Scholar
  13. Ghause, M.S., Singh, V., Kumar, A., Wahal, R., Bhatia, V.K., Agarwal J. 2002. A study of cardiovascular response during laryngoscopy and intubation and their attenuation by ultra short acting b-blocker esmolol. Journal of Anesthesia, 46, 104–6Google Scholar
  14. Herman, R.A., Scherer, P.N., Shan G. 2008. Evaluation of logistic and polynomial models for fitting sandwich-ELISA calibration curves. Journal of Immunological Methods, 339, 245–258. DOI: 10.1016/j.jim.2008.09.001CrossRefGoogle Scholar
  15. Jay, G.T., Chow M.S. 1995. Interaction of epinephrine and betablockers. Journal of the American Medical Association, 274, 1830–1832CrossRefGoogle Scholar
  16. Johnston, L., Harding, S.A., La Flamme A.C. 2015. Comparing methods for ex vivo characterization of human monocyte phenotypes and in vitro responses. Immunobiology, 220, 1305–1310. DOI: 10.1016/j.imbio.2015.07.014CrossRefGoogle Scholar
  17. Kawai, T., Akira S. 2009. The roles of TLRs, RLRs and NLRs in pathogen recognition. International Immunology, 21, 317–337. DOI: 10.1093/intimm/dxp017CrossRefGoogle Scholar
  18. Lejeune, M., Rybicka, J.M., Chadee K. 2009. Recent discoveries in the pathogenesis and immune response toward Entamoeba histolytica. Future Microbiology, 4, 105–118. DOI: 10.2217/17460913.4.1.105CrossRefGoogle Scholar
  19. Maldonado-Bernal, C., Kirschning, C.J., Rosenstein, Y., Rocha, L.M., Rios-Sarabia, N., Espinosa-Cantellano, M., et al. 2005. The innate immune response to Entamoeba histolytica lipopeptidophosphoglycan is mediated by toll-like receptors 2 and 4. Parasite Immunology, 27, 127–137. DOI: 10.1111/j.1365-3024.2005.00754.xCrossRefGoogle Scholar
  20. Martinez F. O., Helming, L., S. Gordon S. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology, 27, 451–483. DOI: 10.1146/annurev.immunol.021908.132532CrossRefGoogle Scholar
  21. Meyer-Wentrup, F., Burdach S. 2003. Efficacy of dendritic cell generation for clinical use: recovery and purity of monocytes and mature dendritic cells after immunomagnetic sorting or adherence selection of CD14+ starting populations. Journal of Hematotherapy & Stem Cell Research, 12, 289–299. DOI: 10.1089/152581603322023025CrossRefGoogle Scholar
  22. Moraes L. C. A., França, E.L., Pessoa, R.S., Fagundes D.L.G., Hernandes M.G., Ribeiro, V.P., et al. 2015. The effect of IFN-γ and TGF-β in the functional activity of mononuclear cells in the presence of Entamoeba histolytica. Parasites & Vectors, 8, 1–8. DOI: 10.1186/s13071-015-1028-6CrossRefGoogle Scholar
  23. Muñoz-Ortega, M., Quintanar-Stephano, A., García Lorenzana, M., Campos-Esparza, M.R., Silva-Briano, M., Adabache-Ortíz, A., et al. 2011. Modulation of amoebic hepatic abscess by the parasympathetic system. Parasite Immunology, 33, 65–72CrossRefGoogle Scholar
  24. Pacheco-Yépez, J., Rivera-Aguilar, V., Barbosa-Cabrera, E., Rojas Hernández, S., Jarillo-Luna, R.A., Campos-Rodríguez R. 2011. Myeloperoxidase binds to and kills Entamoeba histolytica trophozoites. Parasite Immunology, 33, 255–264. DOI: 10.1111/j.1365-3024.2010.01275.xCrossRefGoogle Scholar
  25. Pilling, D., Fan, T., Huang, D., Kaul, B., Gomer R.H. 2009. Identification of markers that distinguish monocyte-derived fibrocytes from monocytes, macrophages, and fibroblasts. PloS One, 4, e7475.DOI: 10.1371/journal.pone.0007475CrossRefGoogle Scholar
  26. Punshon, G., Vara, D.S., Sales, K.M., Seifalian A.M. 2011. A novel method for the extraction and culture of progenitor stem cells from human peripheral blood for use in regenerative medicine. Biotechnology and Applied Biochemistry, 58, 328–334. DOI: 10.1002/bab.47CrossRefGoogle Scholar
  27. Ravdin J. I., Guerrant R.L. 1981. Role of adherence in cytopathogenic mechanisms of Entamoeba histolytica. Study with mammalian tissue culture cells and human erythrocytes. The Journal of Clinical Investigation, 68, 1305–1313CrossRefGoogle Scholar
  28. Rosales-Encina, J.L., Meza, I., López-De-León, A., Talamás-Rohana P., Rojkind M. 1987. Isolation of a 220-kilodalton protein with lectin properties from a virulent strain of Entamoeba histolytica. The Journal of Infectious Diseases, 5, 790–797CrossRefGoogle Scholar
  29. Rosas-Ballina, M., Tracey K.J. 2009. The neurology of the immune system: neural reflexes regulate immunity. Neuron, 64, 28–32. DOI: 10.1016/j.neuron.2009.09.039CrossRefGoogle Scholar
  30. Salata R. A., Murray, H.W., Rubin, B.Y., Ravdin J.I. 1987. The role of gamma interferon in the generation of human macrophages cytotoxic for Entamoeba histolytica trophozoites. The American Journal of Tropical Medicine and Hygiene, 37, 72–78CrossRefGoogle Scholar
  31. Spangelo, B. L., A. M. Judd, Call, G.B., Zumwalt, J., Gorospe W.C. 1995. Role of the cytokines in the hypothalamic-pituitaryadrenal and gonadal axes. Neuroimmunomodulation, 2, 299–312CrossRefGoogle Scholar
  32. Sternberg E. M. 2006. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nature Reviews. Immunology, 6, 318–328. DOI: 10.1038/nri1810CrossRefGoogle Scholar
  33. Talamás-Rohana, P., Schlie-Guzmán, M.A., Hernández-Ramírez, V.I., Rosales-Encina J.L 1995. T-cell suppression and selective in vivo activation of TH2 subpopulation by the Entamoeba histolytica 220-kilodalton lectin. Infection and Immunity, 63, 3953–3958PubMedPubMedCentralGoogle Scholar
  34. Tecchio, C., Micheletti, A., M. A. Cassatella M.A. 2014. Neutrophilderived cytokines: facts beyond expression. Frontiers in Immunology, 5, 508. DOI: 10.3389/fimmu.2014.00508CrossRefGoogle Scholar
  35. Tsutsumi, V., Mena-Lopez, R., Anaya-Velazquez, F., Martinez-Palomo A. 1984. Cellular bases of experimental amebic liver abscess formation. The American Journal of Pathology, 117, 81–91PubMedPubMedCentralGoogle Scholar
  36. Ventura-Juarez, J., Campos-Esparza, M.R., Pacheco-Yepez, J., López-Blanco, J.A., Adabache-Ortíz, A., Silva-Briano, M., Campos-Rodríguez R. 2016. Entamoeba histolytica induces human neutrophils to form NETs. Parasite Immunology, 38, 503–509. DOI: 10.1111/pim.12332CrossRefGoogle Scholar
  37. Ventura-Juárez, J., Jarillo-Luna, A., Aguilar, F., Vázquez, P., Fernández M., Reyes, M., Rodríguez C. 2003. Human amoebic hepatic abscess: in situ interactions between trophozoites, macrophages, neutrophils and T cells. Parasite Immunology, 25, 503–515CrossRefGoogle Scholar
  38. Wang, Y., Gao, B., Xiong S. 2014. Involvement of NLRP3 inflammasome in CVB3-induced viral myocarditis. American Journal of Physiology. Heart and Circulatory Physiology, 307, H1438–47. DOI: 10.1152/ajpheart.00441.2014CrossRefGoogle Scholar
  39. Wnorowski, A., Jozwiak K. 2014. Homo- and hetero-oligomerization of β2-adrenergic receptor in receptor trafficking, signaling pathways and receptor pharmacology. Cellular Signalling, 26, 2259–2265. DOI: 10.1016/j.cellsig.2014.06.016CrossRefGoogle Scholar
  40. Zhou, J., Yan, J., Liang, H., Jiang J. 2014. Epinephrine enhances the response of macrophages under LPS stimulation. BioMed Research International, 2014, 254686. DOI: 10.1155/2014/254686PubMedPubMedCentralGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2018

Authors and Affiliations

  • Fabiola Rocío del Villalobos-Gómez
    • 1
    • 2
  • Mario García-Lorenzana
    • 3
  • Galileo Escobedo
    • 4
  • Patricia Talamás-Rohana
    • 5
  • Rogelio Salinas-Gutiérrez
    • 6
  • Verónica-Ivonne Hernández-Ramírez
    • 5
  • Esperanza Sánchez-Alemán
    • 1
  • María Rosario del Campos-Esparza
    • 1
  • Martín Humberto Muñoz-Ortega
    • 7
  • Javier Ventura-Juárez
    • 1
    Email author
  1. 1.Universidad Autónoma de Aguascalientes, Departamento de MorfologíaCentro de Ciencias BásicasAguascalientesMéxico
  2. 2.Doctorado en Ciencias Biológicas y de la SaludUniversidad Autónoma Metropolitana, CDMXMéxico
  3. 3.Área de Neurociencias, Departamento de Biología de la ReproducciónUniversidad Autónoma Metropolitana-IztapalapaIztapalapaMéxico
  4. 4.Universidad Nacional Autónoma de México, Hospital General de México “Dr. Eduardo Liceaga”Laboratorio de Hígado, Páncreas y Motilidad, Unidad de Medicina Experimental, Facultad de MedicinaCiudad de MéxicoMéxico
  5. 5.Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPNAvenida Instituto Politécnico Nacional 2508Ciudad de MéxicoMéxico
  6. 6.Universidad Autónoma de Aguascalientes, Departamento de EstadísticaCentro de Ciencias BásicasAguascalientesMéxico
  7. 7.Departamento de QuímicaUniversidad Autónoma de AguascalientesAguascalientesMéxico

Personalised recommendations