Advertisement

Acta Parasitologica

, Volume 63, Issue 2, pp 244–251 | Cite as

Structural predication and antigenic analysis of Toxoplasma gondii ROP20

  • Jian Zhou
  • Wanchun Wang
  • Pengxia Song
  • Lin Wang
  • Yali Han
  • Jingjing Guo
  • Zhen Hao
  • Xi Zhu
  • Qiong Zhou
  • Xiadong Du
  • Gang Lu
  • Shenyi He
  • Yingquan LuoEmail author
Article

Abstract

Toxoplasma gondii infects almost all the warm-blooded animals. ROP20 protein is expressed in the rhoptry of Toxoplasma gondii. In this study, the secondary structure of ROP20 was analyzed using SMART software. We constructed and analyzed the 3D model of ROP20 protein using SWISS-MODEL online procedure and Visual Molecular Dynamics (VMD) software. The structure analysis fully indicated that ROP20 protein is an important member of the ROP family. Furthermore, We used DNASTAR software and Epitope Database online service to analyze liner-B cell epitopes and T-cell epitopes of ROP20 protein. All the analysis results of ROP20 protein can provide positive information on treatment and vaccine for toxoplasmosis. Moreover, ROP20 gene was obtained from PCR, and a recombinant eukaryotic expression vector (pEGFP-C1-ROP20) was constructed in the following study. After restriction enzyme digestion, the constructed plasmid was transfected into HEK 293-T cells. The RT-PCR result indicated that the recombinant plasmid could transcribe successfully in HEK 293-T cell. The results of western blotting indicated the expressed proteins can be recognized by anti-STAg mouse sera.

Keywords

Toxoplasma gondii ROP20 secondary structures constructed plasmids expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, Y., He, S., Zhao, G., Chen, L., Shi N. Zhou H. et al. 2012. Toxoplasma gondii: bioinformatics analysis, cloning and expression of a novel protein TgIMP1. Experimental Parasitology, 132, 458–464. DOI: 10.1016/j.exppara.2012.09.015CrossRefGoogle Scholar
  2. Bradley, P.J., Ward, C., Cheng, S.J., Alexander, D.L., Coller S. Coombs G. H. et al. 2005. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. The Journal of Biological Chemistry, 280, 34245–34258CrossRefGoogle Scholar
  3. Cao, A., Liu, Y., Wang, J., Li, X., Wang S. Zhao Q. et al. 2015. Toxoplasma gondii: Vaccination with a DNA vaccine encoding Tand B-cell epitopes of SAG1, GRA2, GRA7 and ROP16 elicits protection against acute toxoplasmosis in mice. Vaccine, 33, 6757–6762. DOI: 10.1016/j.vaccine.2015.10.077CrossRefGoogle Scholar
  4. Constant, S., Pfeiffer, C., Woodard, A., Pasqualini T. Bottomly K. 1995. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. The Journal of Experimental Medicine, 182, 1591–1596CrossRefGoogle Scholar
  5. Cui, Y., Yi, L., Zhang, M.M., Zhou, Y., Tan Z.G. Huang T. et al. 2017. WITHDRAWN: Knockdown of LncRNA HOXA11 Antisense Promotes Glioma Cell Apoptosis Via Sponging MiR-140-5p. Oncology Research, [Epub ahead of print]. DOI: 10.3727/096504017X14972669062547Google Scholar
  6. Han, Y., Zhou, A., Lu, G., Zhao, G., Wang L. Guo J. et al. 2017. Protection via a ROM4 DNA vaccine and peptide against Toxoplasma gondii in BALB/c mice. BMC Infectious Diseases, 17, 59. DOI: 10.1186/s12879-016-2104-zCrossRefGoogle Scholar
  7. Hopp T.P. Woods K.R. 1981. Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences of the United States of America, 78, 3824–3828CrossRefGoogle Scholar
  8. Liu, K.Y., Zhang, D.B., Wei, Q.K., Li, J., Li G.P. Yu J.Z. 2006. Biological role of surface Toxoplasma gondii antigen in development of vaccine. World journal of gastroenterology, 12, 2363–2368CrossRefGoogle Scholar
  9. Lu, G., Wang, L., Zhou, A., Han, Y., Guo J. Song P. et al. 2015. Epitope analysis, expression and protection of SAG5A vaccine against Toxoplasma gondii. Acta Tropica, 146, 66–72. DOI: 10.1016/j.actatropica.2015.03.013CrossRefGoogle Scholar
  10. Lu, G., Zhou, A., Meng, M., Wang, L., Han Y. Guo J . et al. 2014. Alphagalactosylceramide enhances protective immunity induced by DNA vaccine of the SAG5D gene of Toxoplasma gondii. BMC Infectious Diseases, 14, 3862. DOI: 10.1186/s12879-014-0706-xCrossRefGoogle Scholar
  11. Lu, G., Zhou, J., Zhou, A., Han, Y., Guo J. Song P. et al. 2017. SAG5B and SAG5C combined vaccine protects mice against Toxoplasma gondii infection. Parasitology International, 66, 596–602. DOI: 10.1016/j.parint.2017.06.002CrossRefGoogle Scholar
  12. Nabi, H., Rashid, I., Ahmad, N., Durrani, A., Akbar H. Islam S. et al. 2017. Induction of specific humoral immune response in mice immunized with ROP18 nanospheres from Toxoplasma gondii. Parasitology Research, 116, 359–370CrossRefGoogle Scholar
  13. Peixoto, L., Chen, F., Harb, O.S., Davis, P.H., Beiting D.P. Brownback C.S. et al. 2010. Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. Cell Host & Microbe, 8, 208–218. DOI: 10.1016/j.chom.2010.07.004CrossRefGoogle Scholar
  14. Ram, H., Rao, J.R., Tewari, A.K., Banerjee P.S. Sharma A.K. 2013. Molecular cloning, sequencing, and biological characterization of GRA4 gene of Toxoplasma gondii. Parasitology Research, 112, 2487–2494. DOI: 10.1007/s00436-013-3414-3CrossRefGoogle Scholar
  15. Romano, P., Giugno R. Pulvirenti A. 2011. Tools and collaborative environments for bioinformatics research. Briefings in Bioinformatics, 12, 549–561. DOI: 10.1093/bib/bbr055CrossRefGoogle Scholar
  16. Wang, H.L., Wang, Y.J., Pei, Y.J., Bai, J.Z., Yin L.T. Guo R. et al. 2016. DNA vaccination with a gene encoding Toxoplasma gondii Rhoptry Protein 17 induces partial protective immunity against lethal challenge in mice. Parasite (Paris, France), 23, 4. DOI: 10.1051/parasite/2016004CrossRefGoogle Scholar
  17. Wang, H.L., Zhang, T.E., Yin, L.T., Pang, M., Guan L. Liu H.L. et al. 2014. Partial protective effect of intranasal immunization with recombinant Toxoplasma gondii rhoptry protein 17 against toxoplasmosis in mice. PloS One, 9, e108377. DOI: 10.1371/journal.pone.0108377CrossRefGoogle Scholar
  18. Wang, L., Lu, G., Zhou, A., Han, Y., Guo J. Zhou H. et al. 2016. Evaluation of immune responses induced by rhoptry protein 5 and rhoptry protein 7 DNA vaccines against Toxoplasma gondii. Parasite Immunology, 38, 209–217. DOI: 10.1111/pim.12306CrossRefGoogle Scholar
  19. Wang, X., Lv, G., Li, J., Wang, B., Zhang Q. Lu C. 2017. LncRNARP11-296A18.3/miR-138/HIF1A Pathway Regulates the Proliferation ECM Synthesis of Human Nucleus Pulposus Cells (HNPCs). Journal of Cellular Biochemistry, 118, 4862–4871. DOI: 10.1002/jcb.26166CrossRefGoogle Scholar
  20. Wang, Y., Wang, G., Ou, J., Yin H. Zhang D. 2014. Analyzing and identifying novel B cell epitopes within Toxoplasma gondii GRA4. Parasites & Vectors, 7, 474. DOI: 10.1186/s13071-014-0474-xCrossRefGoogle Scholar
  21. Wang, Y., Wang, M., Wang, G., Pang, A., Fu, B., Yin H. et al. 2011. Increased survival time in mice vaccinated with a branched lysine multiple antigenic peptide containing B- and T-cell epitopes from T. gondii antigens. Vaccine, 29, 8619–8623. DOI: 10.1016/j.vaccine.2011.09.016CrossRefGoogle Scholar
  22. Xiong, Y., Wang, L., Li, Y., Chen, M., He W. Qi L. 2017. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR). Cellular Physiology and Biochemistry, 43, 405–418. DOI: 10.1159/000480419CrossRefGoogle Scholar
  23. Yang, W.B., Zhou, D.H., Zou, Y., Chen, K., Liu Q. Wang J.L. et al. 2017. Vaccination with a DNA vaccine encoding Toxoplasma gondii ROP54 induces protective immunity against toxoplasmosis in mice. Acta Tropica, 176, 427–432. DOI: 10.1016/j.actatropica.2017.09.007CrossRefGoogle Scholar
  24. Yu, S.Y., Dong, B., Zhou S.H. Tang L. 2017a. LncRNA MALAT1: A potential regulator of autophagy in myocardial ischemiareperfusion injury. International Journal of Cardiology, 247, 25. DOI: 10.1016/j.ijcard.2017.04.011CrossRefGoogle Scholar
  25. Yu, S.Y., Dong, B., Zhou S.H. Tang L. 2017b. LncRNA UCA1 modulates cardiomyocyte apoptosis by targeting miR-143 in myocardial ischemia-reperfusion injury. International Journal of Cardiology, 247, 31. DOI: 10.1016/j.ijcard.2017.05.055CrossRefGoogle Scholar
  26. Zhang, T.E., Yin, L.T., Li, R.H., Wang, H.L., Meng X.L. Yin G.R. 2015. Protective immunity induced by peptides of AMA1, RON2 and RON4 containing T-and B-cell epitopes via an intranasal route against toxoplasmosis in mice. Parasites & Vectors, 8, 15. DOI: 10.1186/s13071-015-0636-5CrossRefGoogle Scholar
  27. Zhao, G., Zhou, A., Lu, G., Meng, M., Sun M. Bai Y. et al. 2013. Identification and characterization of Toxoplasma gondii aspartic protease 1 as a novel vaccine candidate against toxoplasmosis. Parasites & Vectors, 6, 175. DOI: 10.1186/1756-3305-6-175CrossRefGoogle Scholar
  28. Zhou J. Wang L. 2017. SAG4 DNA and Peptide Vaccination Provides Partial Protection against T. gondii Infection in BALB/c Mice. Frontiers in Microbiology, 8, 1733. DOI: 10.3389/fmicb.2017.01733CrossRefGoogle Scholar
  29. Zhou, J., Lu G. He S. 2016. Analysis of structures and epitopes of a novel secreted protein MYR1 in Toxoplasma gondii. Folia Parasitologica, 63. DOI: 10.14411/fp.2016.028Google Scholar
  30. Zhou, J., Lu, G., Wang, L., Zhou, A.H., Han Y.L. Guo J.J. et al. 2017. Structuraland antigenic analysis of a new Rhoptry Pseudokinase Gene (ROP54) in Toxoplasma gondii. Acta Parasitologica, 62, 513–519. DOI: 10.1515/ap-2017-0061CrossRefGoogle Scholar
  31. Zhou, J., Wang, L., Lu, G., Zhou, A., Zhu M. Li Q. et al. 2016. Epitope analysis and protection by a ROP19 DNA vaccine against Toxoplasma gondii. Parasite (Paris, France), 23, 17. DOI: 10.1051/parasite/2016017CrossRefGoogle Scholar
  32. Zhou, J., Wang, L., Zhou, A., Lu, G., Li Q. Wang Z. et al. 2016. Bioinformatics analysis and expression of a novel protein ROP48 in Toxoplasma gondii. Acta Parasitologica, 61, 319–328. DOI: 10.1515/ap-2016-0042CrossRefGoogle Scholar
  33. Zuo, Z.K., Gong, Y., Chen, X.H., Ye, F., Yin Z.M. Gong Q.N. et al. 2017. TGFbeta1-Induced LncRNA UCA1 Upregulation Promotes Gastric Cancer Invasion and Migration. DNA Cell Biology, 36, 159–167. DOI: 10.1089/dna.2016.3553CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2018

Authors and Affiliations

  • Jian Zhou
    • 1
    • 2
  • Wanchun Wang
    • 1
  • Pengxia Song
    • 3
  • Lin Wang
    • 4
  • Yali Han
    • 5
  • Jingjing Guo
    • 5
  • Zhen Hao
    • 5
  • Xi Zhu
    • 6
    • 7
  • Qiong Zhou
    • 8
  • Xiadong Du
    • 1
  • Gang Lu
    • 9
  • Shenyi He
    • 5
  • Yingquan Luo
    • 10
    Email author
  1. 1.Department of Orthopedics, The Second Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Sports Medicine Research CenterCentral South UniversityChangshaPeople’s Republic of China
  3. 3.Department of MedicineQuzhou College of TechnologyQuzhouPeople’s Republic of China
  4. 4.Department of ElectroneurophysiologyJinan Children’s HospitalJinanPeople’s Republic of China
  5. 5.Department of ParasitologyShandong University School of MedicineJinanPeople’s Republic of China
  6. 6.Department of Lymphoma and HematologyHunan Cancer HospitalChangshaPeople’s Republic of China
  7. 7.University of South ChinaHengyangPeople’s Republic of China
  8. 8.Department of CardiologyThe Fourth Hospital of ChangshaChangshaPeople’s Republic of China
  9. 9.Department of PathologyTaishan Medical CollegeTaianPeople’s Republic of China
  10. 10.Department of GeriatricsThe Second Xiangya Hospital, Central South UniversityChangshaPeople’s Republic of China

Personalised recommendations