Advertisement

Acta Parasitologica

, Volume 63, Issue 1, pp 99–105 | Cite as

Metazoan parasite fauna of migrating common garfish, Belone belone (L.), in the Baltic Sea

  • Patrick UngerEmail author
  • Kilian Neubert
  • Harry W. Palm
Article

Abstract

A total of 35 common garfish, Belone belone (Linnaeus, 1761), were studied for metazoan parasites on their spawning grounds in the western Baltic Sea. Nine parasite species were found, and six new locality records could be established for German coastal waters (Axine belones, Monogenea; Proteocephalus sp., Cestoda; Anisakis simplex (s.s.), Contracaecum rudolphii A and Hysterothylacium aduncum, Nematoda; Echinorhynchus gadi, Acanthocephala). For the first time, the marine ectoparasite A. belones was recorded from the gills of garfish inside the Baltic Sea, indicating its ability to survive the spawning migration as well as the brackish water conditions at its reproduction grounds. This is alike the endohelminth A. simplex (s.s.), that was identified by molecular analyses of the internal transcribed spacer (ITS-1, 5.8S, ITS-2) region. Almost all isolated metazoans were parasites commonly recorded from the northeast Atlantic Ocean and the North Sea. The lower number of typical generalist Baltic Sea parasites indicates the rapid migration of common garfish onto the spawning grounds, reducing the access and uptake of these species.

Keywords

Baltic Sea garfish Belone belone metazoan parasites spawning migration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen K., des Clers S., Jensen T. 1995. Aspects of the sealworm Pseudoterranova decipiens life-cycle and seal-fisheries interactions along the Norwegian coast. Developments in Marine Biology, 4, 557–564CrossRefGoogle Scholar
  2. Bartz R.P., Jacobsen H.P. 1969. Die digenen Darmtrematoden der Wismarer Bucht. M.Sc. thesis, Pädagogische Hochschule Güstrow, pp. 109 (In German)Google Scholar
  3. Berger W.H., Parker F.L. 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science, 168, 3937, 1345–1347CrossRefGoogle Scholar
  4. Bush O., Lafferty A.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on his own terms. Margolis et al. revisited. Journal of Parasitology, 83, 575–583. DOI: 10.2307/3284227CrossRefGoogle Scholar
  5. Cribb T.H., Bray R.A. 2010. Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76, 1–7. DOI:10.1007/s11230-010-9229-zCrossRefGoogle Scholar
  6. Dalgaard P., Madsen H.L., Samieian N., Emborg J. 2006. Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone belone)–effect of modified atmosphere packaging and previous frozen storage. Journal of Applied Microbiology, 101, 80–95. DOI:10.1111/j.1365-2672.2006.02905.xCrossRefGoogle Scholar
  7. Dorman J.A. 1986. Contributions to the biology of the garfish Belone belone and Belone svetovidovi. Ph.D. thesis, University of Dublin, IrelandGoogle Scholar
  8. Dorman J.A. 1989. Some aspects of the biology of the garfish Belone belone (L.) from Southern Ireland. Journal of Fish Biology, 35, 621–629CrossRefGoogle Scholar
  9. Dorman J.A. 1991. Investigations into the biology of the garfish, Belone belone (L.), in Swedish waters. Journal of Fish Biology, 39, 59–69CrossRefGoogle Scholar
  10. Dziekońska-Rynko J., Rokicki J. 2007. Life cycle of the nematode Contracaecum rudolphii Hartwig, 1964 (sensu lato) from northern Poland under laboratory conditions. Helminthologia, 44, 3, 95–102. DOI: 10.2478/s11687-007-0013-9CrossRefGoogle Scholar
  11. Engelbrecht H. 1958. Untersuchungen über den Parasitenbefall der Nutzfische im Greifswalder Bodden und Kleinem Haff. Zeitschrift für Fischerei, 7, 481–511. (In German)Google Scholar
  12. Fagerholm H.P. 1976. Fish nematodes from brackish and freshwater fishes in Finland. Norwegian Journal of Zoology, 24, 4, 46Google Scholar
  13. FAO 2016. Food and Agriculture Organization of the United Nations, Fishery Statistical Collections, Global Aquaculture Production, https://doi.org/www.fao.org. Cited 28 October 2016Google Scholar
  14. Fischer E. 1955. Die parasitischen Würmer der wirtschaftlich wichtigsten Ostseefische. PhD-Thesis, Humboldt-University Berlin, Germany. (In German)Google Scholar
  15. Fulton T.W. 1904. The rate of growth of fishes. Twenty-second Annual Report, Part III. Fisheries Board of Scotland, Edinburgh, 141–241Google Scholar
  16. Gibson D.I., Jones A., Bray R.A. 2002. Keys to the Trematoda, vol. 1. London: CAB International and Natural History Museum, pp. 521Google Scholar
  17. Grabda J. 1971. Catalogue of Parasitic Fauna in Poland. II, Parasites of Cyclostomates and Fishes. PWN Warszawa-WrodawGoogle Scholar
  18. Grabda J. 1981. Parasitic fauna of garfish Belone belone (L.) from the Pomeranian Bay (southern Baltic) and its origin. Acta ichthy-ologica et piscatoria, 9, 1, 75–85CrossRefGoogle Scholar
  19. Holmes J.C., Price P.W. 1986. Communities of parasites. In: (Eds. Anderson D.J., Kikkawa J.) Community ecology: Pattern and process. Blackwell Scientific Publications, Oxford, U.K., 187–213Google Scholar
  20. Holmes J.C. 1991. Spatial scale and important species in the analysis of communities of parasites. Second International School: parasite–host environment, Sofia, 28, pp. 14Google Scholar
  21. Jacobsen P., Bartz P., Szuks H. 1971. Die Trematodenfauna des Darmkanals der Fische des Salzhaffs (westliche Ostsee). Wissenschaftliche Zeitschrift der Pädagogischen Hochschule Güstrow, 49–51. (In German)Google Scholar
  22. Kanarek G. 2011. Population biology of Contracaecum rudolphii sensu lato (Nematoda) in the great cormorant (Phalacrocorax carbo) from northeastern Poland. The Journal of parasitology, 97, 185–191. DOI: 10.1645/GE-2473.1CrossRefGoogle Scholar
  23. Karlsbakk E., Køie M. 2012. The marine myxosporean Sigmomyxa sphaerica (Thélohan, 1895) gen. n., comb. n.(syn. Myxidium sphaericum) from garfish (Belone belone (L.)) uses the polychaete Nereis pelagica L. as invertebrate host. Parasitology Research, 110, 1, 211–218. DOI: 10.1007/s00436-011-2471-8CrossRefGoogle Scholar
  24. Klimpel S., Palm H.W. 2011. Anisakid nematode (Ascaridoidea) life cycles and distribution: Increasing zoonotic potential in the time of climate change? Parasitology Research Monographs 2, Springer-Verlag, Heidelberg, Germany, 1–22. DOI: 10.1007/978-3-642-390 21396-0_11Google Scholar
  25. Køie M. 1993. Aspects of the life cycle and morphology of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda, Ascaridoidea, Anisakidae). Canadian Journal of Zoology, 71, 7, 1289–1296CrossRefGoogle Scholar
  26. Kompowski A. 1965. The investigations on the garfish (Belone belone L.) from Puck Minchin, Bay. Prace Morskiego Instytutu Rybackiego, 13Google Scholar
  27. Kuhn T., García-Màrquez J., Klimpel S. 2011. Adaptive radiation within marine anisakid nematodes: a zoogeographical modeling of cosmopolitan, zoonotic parasites. PLoS One, 6, 12, e28642. DOI: 10.1371/journal.pone.0028642Google Scholar
  28. Levsen A., Lunestad B.T. 2010. Anisakis simplex third stage larvae in Norwegian spring spawning herring (Clupea harengus L.), with emphasis on larval distribution in the flesh. Veterinary Parasitology, 171, 3, 247–253. DOI: 10.1016/j.vetpar.2010.03.039CrossRefGoogle Scholar
  29. Llewellyn J., Green J.E., Kearn G.C. 1984. A checklist of Monogenean (Platyhelminth) parasites of Plymouth hosts. Journal of the Marine Biological Association of the United Kingdom, 64, 881–887CrossRefGoogle Scholar
  30. Lorenz L. 1878. Ueber die Organisation der Gattungen Axine und Microcotyle.–Arbeiten aus dem Zoologischen Institute, Wien, 1, 405–436. (In German)Google Scholar
  31. Lüthen K. 1988. Zur Parasitierung der Flunder, Platichthys flesus (L.), an der Ostseeküste der DDR. Wissenschaftliche Zeitschrift der Pädagogischen Hochschule Güstrow, 1, 49–62. (In German)Google Scholar
  32. Moravec F. 2004. Metazoan Parasites of Salmonid Fishes in Europe. Academia, Prague, pp. 512Google Scholar
  33. Möller H. 1975. Der Einfluß von Temperatur und Salzgehalt auf Entwicklung und Verbreitung von Fischparasiten, PhD-Thesis, University Kiel, 1008 pp. (In German)Google Scholar
  34. Odhner T. 1905. Die Trematoden des arktischen Gebietes. Fauna Arctica, 4, 291–372. (In German)Google Scholar
  35. Özer A., Yurakhno V. 2013. Parasite fauna of garfish Belone belone collected from Sinop coasts of the Black Sea, Turkey. Bulletin of the European Association of Fish Pathologists, 33, 171–180Google Scholar
  36. Palm H.W., Klimpel S., Bucher C. 1999. Checklist of metazoan fish parasites of German coastal waters. Berichte aus dem Institut für Meereskunde an der Christian-Albrecht Universität, Kiel, 307, pp. 148Google Scholar
  37. Palm H.W., Bray R.A. 2014. Marine Fish Parasitology in Hawaii. Westarp & Partner Digitaldruck, Hohenwarsleben, pp. 302Google Scholar
  38. Pielou E.C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144CrossRefGoogle Scholar
  39. Podolska M., Horbowy J., Wyszynski M. 2006. Discrimination of Baltic herring populations with respect to Anisakis simplex larvae infection. Journal of Fish Biology, 68, 1241–1256. DOI: 10.1111/j.0022-1112.2006.01004.xCrossRefGoogle Scholar
  40. Poulin R. 1997. Evolutionary ecology of parasites: from individuals to community. Chapman & Hall, London, pp. 360Google Scholar
  41. Prost M. 1967. Comparison of some species of fishes from the Mediterranean, Adriatic and Baltic Seas. Acta Parasitologica polonica, XIV, 32Google Scholar
  42. Radujković B.M., Šundić D. 2014. Parasitic Flatworms (Platyhel-minthes: Monogenea, Digenea, Cestoda) of Fishes from the Adriatic Sea. Natura Montenegrina, 13, 7–280. DOI: 10.13140/RG.2.1.1401.5448Google Scholar
  43. Reimer L.W., Walter U. 1993. The parasitization of Gadus morhua in the southern Baltic Sea. Applied parasitology, 34, 3, 181–186PubMedGoogle Scholar
  44. Riemann F. 1988. Nematoda. In: (Eds Higgins R.P., Thiel H.) Introduction to the study of meiofauna. Smithsonian Press, Washington, DC, 293–301Google Scholar
  45. Roman-Chiriac E. 1960. Clasa Monogenoidea. Fauna Republicii Populare Romane, Platyhelminthes, 2, 1–149.Google Scholar
  46. Rynkiewicz J. 1970. The Parasite Fauna of Garfish Belone belone (L.) from Puck Bay. Acta Ichthyologica et Piscatoria, 1, 103–106CrossRefGoogle Scholar
  47. Scholz T. 1999. Life cycles of species of Proteocephalus, parasites of fishes in the Palearctic Region: a review. Journal of Helminthology, 73, 1, 1–19PubMedGoogle Scholar
  48. Shannon C.E. 1948. A mathematical theory of communication. Bell System Technical Journal, 27, 379–423CrossRefGoogle Scholar
  49. Shih H.H. 2004. Parasitic helminth fauna of the cutlass fish, Trichiurus lepturus L., and the differentiation of four anisakid nematode third-stage larvae by nuclear ribosomal DNA sequences. Parasitology Research, 93, 188–195. DOI: 10.1007/s00436-004-1095-7CrossRefGoogle Scholar
  50. Simpson E.H. 1949. Measurement of diversity. Nature, 163, 688CrossRefGoogle Scholar
  51. Szostakowska B., Myjak P., Wyszynski M., Pietkiewicz H., Rokicki J. 2005. Prevalence of Anisakin Nematodes in Fish from southern Baltic Sea. Polish Journal of Microbiology, 54, 41–45PubMedGoogle Scholar
  52. Szostakowska B., Fagerholm H. P. 2007. Molecular identification of two strains of third-stage larvae of Contracaecum rudolphii sensu lato (Nematoda: Anisakidae) from fish in Poland. Journal of Parasitology, 93, 961–964CrossRefGoogle Scholar
  53. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30, 2725–2729. DOI: 10.1093/molbev/mst197CrossRefGoogle Scholar
  54. Unger P., Klimpel S., Lang T., Palm H.W. 2014. Metazoan parasites from herring (Clupea harengus L.) as biological indicators in the Baltic Sea. Acta Parasitologica, 59, 518–528. DOI: 10.2478/s11686-014-0276-5CrossRefGoogle Scholar
  55. Unger P., Palm H.W. 2016. Parasitation of sea trout (Salmo trutta trutta L.) from the spawning ground and German coastal waters off Mecklenburg-Western Pomerania, Baltic Sea. Parasitology Research, 115, 1, 165–174. DOI: 10.1007/s00436-015-4732-4CrossRefGoogle Scholar
  56. Unger P., Palm H. W. 2017. Parasite risk of maricultured rainbow trout (Oncorhynchus mykiss Walbaum, 1792) in the Western Baltic Sea, Germany. Aquaculture International, 25, 975–989. DOI: 0.1007/s10499-016-0096-8CrossRefGoogle Scholar
  57. Van Beneden P.J. 1858. Mémoire sur les vers intestinaux. — Supplement Comptes Rendus des Sciences de la Société de Biologie, Paris, 2, 1–376Google Scholar
  58. Voigt H.R. 1981. A survey of the parasites from the Baltic Smelt, Osmerus Eperlanus. Proceedings of the 10th symposium of the Scandinavian Society for Parasitology. ABO Akademi Information, 16, 62–65Google Scholar
  59. Wheeler A. 1969. The Fishes of the British Isles and North West Europe. East Lansing: Michigan State University Press, pp. 613Google Scholar
  60. Zhu X.Q., Gasser R.B., Jacobs D.E., Hung G.C., Chilton N.B. 2000. Relationships among some ascaridoid nematodes based on ribosomal DNA sequence data. Parasitology Research, 86, 738–744. DOI: 10.1007/PL00008561CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2018

Authors and Affiliations

  1. 1.Aquaculture and Sea-Ranching, Faculty of Agricultural and Environmental SciencesUniversity of RostockRostockGermany

Personalised recommendations