Advertisement

Acta Parasitologica

, Volume 62, Issue 3, pp 666–674 | Cite as

In vitro and in vivo studies of nematophagous fungi Arthrobotrys musiformis and Arthrobotrys robusta against the larvae of the trichostrongylides

  • Kui Zheng Cai
  • Bo Bo Wang
  • Qiang Xu
  • Jun Lin Liu
  • Kang Ying Wang
  • Yu Jia Xue
  • Hai Yan Zhang
  • Hai Yu Wang
  • Xin CaoEmail author
  • Zhong Ren MaEmail author
Article

Abstract

Six isolates of Arthrobotrys musiformis and five isolates of Arthrobotrys robusta were assessed in in vitro test regarding the capacity of prey larvae of the natural mixed trichostrongylides. In 5 isolates of A. robusta, the decrease percentage of infective larvae (L3) of trichostrongylides ranged from 97.71%–99.98% and for the isolates of A. musiformis, 5 isolates ranged from 97.99%–99.95% and only NF015 isolate 60.72%. In the following, the isolate (NPS045) of A. musiformis was selected to assess its excretion time in feces after oral administration of goats. Regarding L3 reduction rate, results demonstrated by NPS045 at each time point after fungal administration were 31.65% (12 h), 51.25% (24 h), 41.07% (48 h), 6.44% (72 h), 0% (96 h) and (120 h) (p<0.05) respectively, when compared to the control group. In the plates of the treated groups, the presence of the isolate (NPS045) was detected in samples at 12, 24 and 48 h after the fungus dose and 72 h later was not done. All native isolates of nematophagous fungi, including 6 isolates of A. musiformis and 5 isolates of A. robusta were assessed in vivo regarding the capacity of supporting the passage through goat gastrointestinal tract. The 3 isolates of A. musiformis could be able to pass through the digestive tract of goats without complete loss of ability of preying larvae of trichostrongylides in feces and their efficacies ranged from 47.60% to 55.93%. The two isolates of A. robusta survived the passage and the percentage reduction of L3 in feces were 41.96% and 66.97%, respectively. The remaining isolates were negative for both the efficacy of L3 reduction and the fungal examination in feces. In this study, the native isolates whose efficacies are good in vivo test have preliminarily demonstrated to be potential for the biological control of small ruminant parasite.

Keywords

Arthrobotrys musiformis Arthrobotrys robusta nematophagous fungi goats sheep 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anan’ko G.G., Teplyakova T.V. 2011. Factors responsible for transition of the Duddingtonia flagrans carnivorous fungus from the saprotrophic to the zootrophic nutrition type. Microbiology, 80, 200–206. DOI: 10.1134/S0026261711020020CrossRefGoogle Scholar
  2. Araújo J.V., Santos M.A., Ferraz S., Maia A.S. 1993. Antagonistic effect of predacious fungi Arthrobotrys on infective Haemonchus placei larvae. Journal Helmintholohy, 67, 136–138. DOI: 10.1017/S0022149X00013018CrossRefGoogle Scholar
  3. Araújo J.V., Assis R.C.L., Campos A.K., Mota M.A. 2006. Efeito antagônico de fungos predadores dos gêneros Monacrosporium, Arthrobotrys e Duddingtonia sobre larvas infectantes de Cooperia sp. e Oesophagostomum sp.. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 58, 373–380. DOI: 10.1590/S0102-09352006000300014. (In Spanish)CrossRefGoogle Scholar
  4. Araújo J.M., Araújo J.V., Braga F.R., Carvalho R.O. 2010. In vitro predatory activity of nematophagous fungi and after passing through gastrointestinal tract of equine on infective larvae of Strongyloides westeri. Parasitology Research, 107, 103–107. DOI: 10.1007/s00436-010-1841-yCrossRefGoogle Scholar
  5. Assis R.C., Luns F.D., Araújo J.V., Braga F.R., Assis R.L., Marcelino J.L., et al. 2013. Comparison between the action of nematode predatory fungi Duddingtonia flagrans and Monacrosporium thaumasium in the biological control of bovine gastrointestinal nematodiasis in tropical Southeastern Brazil. Veterinary Parasitology, 193, 134–140. DOI: 10.1016/j.vetpar.2012.12.005CrossRefGoogle Scholar
  6. Barcante J.M., Barcante T.A., Dias S.R., Vieira L.Q., Lima W.S., Negraocorrea D. 2003. A method to obtain axenic Angiostrongylus vasorum first-stage larvae from dog feces. Parasitology Research, 89, 89–93. DOI: 10.1007/s00436-002-0719-zCrossRefGoogle Scholar
  7. Barger I.A. 1999. The role of epidemiological knowledge and grazing management for helminth control in small ruminants. International Journal for Parasitology, 29, 41–47. DOI: 10.1016/S0020-7519(98)00176-3CrossRefGoogle Scholar
  8. Braga F.R., Araújo J.V., Araujo J.M., Silva A.R., Carvalho R.O., Campos A.K. 2009a. Avaliação in vitro do fungo predador de nematoides Duddingtonia flagrans sobre larvas infectantes de ciatostomíneos deequinos (Nematoda: Cyathostominae). Revista Brasileira De Parasitologia Veterinaria, 18, 83–85. DOI: 10.1016/j.vetpar.2012.12.005. (In Spanish)CrossRefGoogle Scholar
  9. Braga F.R., Carvalho R.O., Araujo J.M., Silva A.R., Araújo J.V., Lima W.S, et al. 2009b. Predatory activity of the fungi Duddingtonia flagrans, Monacrosporium thaumasium, Monacrosporium sinense and Arthrobotrys robusta on Angiostrongylus vasorum first-stage larvae, Journal of Helminthology, 83, 303–308. DOI: 10.1017/S0022149X09232342CrossRefGoogle Scholar
  10. Braga F.R., Silva A.R., Carvalho R.O., Araújo J.V., Guimarães P.H.G., Fujiwara R.T., Frassy L.N. 2010. In vitro predatory activity of the fungi Duddingtonia flagrans, Monacrosporium thaumasium, Monacrosporium sinense and Arthrobotrys robusta on Ancylostoma ceylanicum third stage larvae. Veterinary Microbiology, 146, 183–186. DOI: 10.1016/j.vetmic.2010.05.003CrossRefGoogle Scholar
  11. Braga F.R., Araujo J.V. 2014. Nematophagous fungi for biologicalcontrol of ga-trointestinal nematodes in domestic animals. Applied Microbiology and Biotechnology, 98, 71–82. DOI: 10.1007/s00253-013-5366-zCrossRefGoogle Scholar
  12. Cai K.Z., Liu J.L., Liu W., Wang B.B., Xu Q., Sun L.J., et al. 2016. Screening of different sample types associated with sheep and cattle for the presence of nematophagous fungi in China. Journal of Basic Microbiology, 56, 214–228. DOI: 10.1002/jobm.201500281CrossRefGoogle Scholar
  13. Craig T. M. 2006. Anthelmintic resistance and alternative control methods. Veterinary Clinics of North America–Food Animal Practice, 22, 567–581. DOI: 10.1016/j.cvfa.2006.07.003CrossRefGoogle Scholar
  14. De Gives P.M., Crespo J.F., Rodriguez D. H., Prats V. M. V., Rodríguez D.H., Hernández E. L., Ontiveros Fernandez G.E. 1998. Biological control of Haemonchus contortus infective larvae in ovine faeces by administering an oral suspension of Duddingtonia flagrans chlamydospores to sheep. Journal of Helminthology, 72, 343–347. DOI: 10.1017/S0022149X00016710CrossRefGoogle Scholar
  15. Dias A.S., Araújo J.V., Campos A.K., Braga F.R., Fonseca T.A. 2007. Application of a formulation of the nematophagous fungus Duddingtonia flagrans in the control of cattle gastrointestinal nematodioses. World Journal of Microbiology, 28, 1000–1007. DOI: 10.1007/s11274-007-9356-0Google Scholar
  16. Faizal A.C.M., Rajapakse R.P.V.J. 2004. A preliminary study to determine the efficacy of a nematophgous fungus, Arthrobotry oligospora, against nematode larvae in cattle and goat dung. Journal of the National Science Foundation of Sri Lanka, 32, 29–33. DOI: 10.1016/j.vetpar.2008.09.026CrossRefGoogle Scholar
  17. Falzon L.C., van Leeuwen J., Menzies P.I., Shakya K.P., Jones-Bitton A., Sears W., et al. 2013. Anthelmintic resistance in sheep flocks in Ontario, Canada. Veterinary Parasitology, 193, 150–162. DOI: org/10.1016/j.vetpar.2012.11.014CrossRefGoogle Scholar
  18. Ferreira S.R., Araújo J.V., Braga F.R., Araujo J.M., Carvalho R.O., Silva A.R., et al. 2011. Ovicidal activity of seven Pochonia chlamydosporia fungal isolates on Ascaris suum eggs. Tropical Animal Health and Production, 43, 639–642. DOI: 10.1007/s11250-010-9744-6CrossRefGoogle Scholar
  19. Grønvold J., Nansen P., Henriksen S.A., Larsen M., Wolstrup J., Bresciani J., et al. 1996. Induction of traps by Ostertagia ostertagi larvae, chlamydospore production and growth rate in the nematode-trapping fungus Duddingtonia flagrans. Journal of Helminthology, 70, 291–297. DOI:.1017/S0022149X00015571CrossRefGoogle Scholar
  20. Larsen M., Faedo M., Waller P.J., Hennessy D.R. 1998. The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: Studies with Duddingtonia flagrans. Veterinary Parasitology, 76, 121–128. DOI: 10.1016/S0304-4017(97)00056-3CrossRefGoogle Scholar
  21. Larsen M. 1999. Biological control of helminths. International Journal For Parasitology, 29, 139–146. DOI: 10.1016/S0020-7519(98)00185-4CrossRefGoogle Scholar
  22. Menkir M.S., Asefa A., Uggla A., Waller P.J. 2006. Anthelmintic resistance of nematode parasites of small ruminantsineastern Ethiopia: exploitation of refugia to restore anthelmintic efficacy. Veterinary Parasitology, 135, 337–346. DOI: 10.1016/j.vetpar.2005.09.005CrossRefGoogle Scholar
  23. Mota M.A., Campos A.K., Araújo J.V. 2003. Controle biológico de helmintos parasitos de animais: estágio atual e perspectivas futuras. Pesquisa Veterinaria Brasileira, 23, 93–100. DOI: 10.1590/S0100-736X2003000300001. (In Spanish)CrossRefGoogle Scholar
  24. Nansen P., Foldager J., Hansen J., Henriksen S.A., Jorgensen R.J. 1988. Grazing pressure and acquisition of Ostertagia ostertagi in calves. International Journal Parasitology, 27, 325–335. DOI: 10.1016/0304-4017(88)90046-5Google Scholar
  25. Paz-Silva A., Francisco I., Valero-Coss R.O., Cortiñas F.J., Sánchez J.A., Francisco R., et al. 2011. Ability of the fungus Duddingtonia flagrans to adapt to the cyathostomin egg-output by spreading chlamdospores. Veterinary Parasitology, 179, 277–282. DOI: 10.1016/j.vetpar.2011.02.014CrossRefGoogle Scholar
  26. Petkevicius S., Larsen M., Bach Knudsen E. K., Nansen P., Gronvolda J., Henriksen S. A. A., Wolstrup J. 1998. The effect of the nematode-destroying fungus Duddingtonia flagrans against Oesophagostomum dentatum larvae in faeces from pigs fed different diets. Helminthologia, 35, 111–116Google Scholar
  27. Sargison N.D. 2012. Pharmaceutical treatments of gastrointestinal nematode infections of sheep—future of anthelmintic drugs, Veterinary Parasitology, 189, 79–84. DOI: 10.1016/j.vetpar.2012.03.035CrossRefGoogle Scholar
  28. Scholler M., Rubner A. 1994. Predacious activity of the nematodedestroying fungus Arthrobotrys oligospora in dependence of the medium composition. Microbiological research, 149, 145–149. DOI: 10.1016/S0944-5013(11)80110-2CrossRefGoogle Scholar
  29. Silva B.F., Mauad J.R.C., Braga F.R., Araújo J.V., Campos A.K., Amarante A.F.T. 2010. Efficacy of Duddingtonia flagrans and Arthrobotrys robusta in controlling sheep parasitic gastroenteritis. Parasitology Research, 106, 1343–1350. DOI: 10.1007/s00436-010-1805-2CrossRefGoogle Scholar
  30. Tavela A.O., Araújo J.V., Braga F.R., Araújo J.M., Queiroz L.M., Silveira W.F., Borges L.A. 2012. In vitro association of nematophagous fungi Duddingtonia flagrans (AC001), Monacrosporium thaumasium (NF34) and Pochonia chlamydosporia (VC1) to control horse cyathostomin (Nematoda: Strongylidae). Biochemisty Science Technology, 22, 607–610. DOI: 10.1080/09583157.2012.672952CrossRefGoogle Scholar
  31. Tavela A.O, Araújo J.V., Braga F.R., Silveira W.F., Dornelas e Silva V.H., Carretta Júnior M., et al. 2013. Coadministration of sodium alginate pellets containing the fungi Duddingtonia flagrans and Monacrosporium thaumasium on cyathostomin infective larvae after passing through the gastrointestinal tract of horses. Research Veterinary, 94, 568–572. DOI: 10.1016/j.rvsc.2012.11.011CrossRefGoogle Scholar
  32. Terril T.H., Larsen M., Samples O., Hsted S., Miller J.E., Kaplan RM., Gelaye S. 2004. Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastrointestinal nematodes in goat feces in the southeastern United States: dose titration and dose time interval studies. Veterinary Parasitology, 120, 85–296. DOI: 10.1016/j.vetpar.2003.09.024CrossRefGoogle Scholar
  33. Van Wyk J.A., Cabaret J., Michael L.M. 2004. Morphological identification of nematode larvae of small ruminants and cattle simplified. Veterinary Parasitology, 119, 277–306. DOI: 10.1016/j.vetpar.2003.11.012CrossRefGoogle Scholar
  34. Waghorn T.S., Leathwick D.M., Chen L.Y., Skipp R.A. 2003. Efficacy of the nematode-trapping fungus Duddingtonia flagrans against threespecies of gastro-intestinal nematodesin laboratory faecal cultures from sheep and goats. Veterinary Parasitology, 118, 227–234. DOI: 10.1016/j.vetpar.2003.09.018.CrossRefGoogle Scholar
  35. Waller P.J., Faedo M. 1993. The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep: screening studies. Veterinary Parasitology, 49, 285–297. DOI: 10.1016/0304-4017(93)90127-9CrossRefGoogle Scholar
  36. Wang B.B., Liu W., Chen M.Y., Li X., Han Y., Xu Q., et al. 2015. Isolation and characterization of china isolates of Duddingtonia flagrans, a candidate of the nematophagous fungi for biocontrol of animal parasitic nematodes. Journal of Parasitology, 101, 476–484. DOI: 10.1645/14-715.1CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2017

Authors and Affiliations

  • Kui Zheng Cai
    • 1
  • Bo Bo Wang
    • 1
  • Qiang Xu
    • 1
  • Jun Lin Liu
    • 1
  • Kang Ying Wang
    • 1
  • Yu Jia Xue
    • 1
  • Hai Yan Zhang
    • 1
  • Hai Yu Wang
    • 1
  • Xin Cao
    • 1
    Email author
  • Zhong Ren Ma
    • 2
    Email author
  1. 1.College of Life Science and EngineeringNorthwest University for NationalitiesLanzhouPeople’s Republic of China
  2. 2.Key Laboratory of Bioengineering and Biotechnology (Northwest University for Nationalities)State Ethnic Affairs CommissionLanzhouPeople’s Republic of China

Personalised recommendations