Advertisement

Acta Parasitologica

, Volume 62, Issue 3, pp 513–519 | Cite as

Structuraland antigenic analysis of a new Rhoptry Pseudokinase Gene (ROP54) in Toxoplasma gondii

  • Jian Zhou
  • Gang Lu
  • Lin Wang
  • Aihua H. Zhou
  • Yali L. Han
  • Jingjing J. Guo
  • Pengxia X. Song
  • Huaiyu Y. Zhou
  • Hua Cong
  • Ming Hou
  • Shenyi Y. HeEmail author
Article

Abstract

Toxoplasma gondii is defined as an obligate intracellular apicomplexan parasite and influences approximatelyone-third of the human all over the world. ROP54 protein is expressed in the rhoptry of Toxoplasma gondii. In the present study, we used SMART software to analyzethe secondary structure of ROP54. The 3D model of ROP54 protein was constructed and analyzed using SWISS-MODEL server and VMD software. The structure results fully showed that ROP54 proteinis an importantmember from the ROP family. Moreover, DNAMAN software and Epitope Database online service were used to analyze liner-B cell epitopes and Th-cell epitopes of the protein. The bioinformatics prediction of ROP54 protein could provide positive information on treatment and vaccine for toxoplasmosis. Furthermore, ROP54 gene was obtained from PCR, and a recombinant eukaryotic expression vector (pEGFP-ROP54) was constructed in the following study. After identification of enzyme digestion, the constructed plasmid was transfected into HEK 293-T cells. The RT-PCR result suggested that the recombinant plasmid could transcribe successfully in HEK 293-T cell.

Keywords

ROP54 secondary structures constructed plasmids Toxoplasma gondii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alaganan A., Fentress S.J., Tang K., Wang Q., Sibley L.D. 2014. Toxoplasma GRA7 effector increases turnover of immunity-related GTPases and contributes to acute virulence in the mouse. Proceedings of the National Academy of Sciences USA, 111, 1126–1131. DOI: 10.1073/pnas.1313501111CrossRefGoogle Scholar
  2. Bai Y., He S., Zhao G.H., Chen L., Shi N., Zhou H.Y., et al. 2012. Toxoplasma gondii: bioinformatics analysis, cloning and expression of a novel protein TgIMP1. Experimental Parasitology, 132, 458–464. DOI: 10.1016/j.exppara.2012.09.015CrossRefGoogle Scholar
  3. Behnke M.S., Fentress S.J., Mashayekhi M., Li L.X., Taylor G.A., Sibley L.D. 2012. The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18. PLoS Pathogens, 8, e1002992. DOI: 10.1371/journal.ppat.1002992CrossRefGoogle Scholar
  4. Boothroyd J.C., Grigg M.E. 2002. Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? Current Opinion in Microbiology, 5, 438–442. DOI: 10.1016/S1369-5274(02)00349-1CrossRefGoogle Scholar
  5. Bradley P.J., Ward C., Cheng S.J., Alexander D.L., Coller S., Coombs G.H., et al. 2005. Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. Journal of Biological Chemistry, 280, 34245–34258. DOI: 10.1074/jbc.M504158200CrossRefGoogle Scholar
  6. Butcher B.A., Fox B.A., Rommereim L.M., Kim S.G., Maurer K.J., Yarovinsky F., et al. 2011. Toxoplasma gondii rhoptry kinase ROP16 activates STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathogens, 7, e1002236. DOI: 10.1371/journal.ppat.1002236CrossRefGoogle Scholar
  7. Carter J.M., Loomis-Price L. 2004. B cell epitope mapping using synthetic peptides. Current Protocols in Immunology, DOI:10. 1002/0471142735Google Scholar
  8. Cong H., Gu Q.M., Yin H.E., Wang J.W., Zhao Q.L., Zhou H.Y., et al. 2008. Multi-epitope DNA vaccine linked to the A2/B subunit of cholera toxin protect mice against Toxoplasma gondii. Vaccine, 26, 3913–3921. DOI: 10.1016/j.vaccine.2008.04.046CrossRefGoogle Scholar
  9. Constant S., Pfeiffer C., Woodard A., Pasqualini T., Bottomly K. 1995. Extent of T cell receptor ligation can determine the functional differentiation of native CD4+ T cells. The Journal of Experimental Medicine, 182, 1591–1596. DOI: 10.1084/jem.182.5.1591CrossRefGoogle Scholar
  10. Elliot W. Kim., Santhosh M. Nadipuram., Ashley L. Tetlow., William D. Barshop., et al. 2016. The Rhoptry Pseudokinase ROP54 Modulates Toxoplasma gondii Virulence and Host GBP2 Loading. Msphere, 1, e00045-16. DOI: 10.1128/mSphere. 00045-16Google Scholar
  11. Ferra B., Holec-Gąsior L., Kur J. 2015. A new Toxoplasma gondii chimeric antigen containing fragments of SAG2, GRA1, andimpact of immunodominant sequences size on its diagnostic usefulness. Parasitology Research, 114, 3291–3299. DOI: 10.1007/s00436-015-4552-6CrossRefGoogle Scholar
  12. Gao J., Faraggi E., Zhou Y., Ruan J., Kurgan L. 2012. BEST: improved prediction of B-cell epitopes from antigen sequences. PLoS One, 7, e40104 p. DOI: 10.1371/journal.pone.0040104CrossRefGoogle Scholar
  13. Gershoni JM., Stern B., Denisova G. 1997. Combinatorial libraries, epitope structure and the prediction of protein conformations. Immunology Today, 18, 108–110. DOI: 10.1016/S0167-5699(97)01024-4CrossRefGoogle Scholar
  14. Guex N., Peitsch MC., Schwede T. 2009. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-Pdb Viewer: a historical perspective. Electrophoresis, 30, S162–S173. DOI: 10.1002/elps.200900140CrossRefGoogle Scholar
  15. Guex N., Peitsch N.C. 1997. SWISS-MODEL and the Swiss- PdbViewer: an environment for comparative protein modeling. Electrophoresis, 18, 2714–2723. DOI: 10.1002/elps.1150181505CrossRefGoogle Scholar
  16. Hakansson S., Charron A.J., Sibley L.D. 2001. Toxoplasma evacuoles: atwo-step process of secretion and fusion forms the parasitophorous vacuole. The EMBO Journal, 20, 3132–3144. DOI: 10.1093/emboj/20.12.3132CrossRefGoogle Scholar
  17. Hwang S., Khan I.A. 2015. CD8+ T cell immunity in an encephalitis model of Toxoplasma gondii infection. SEMINARS IN IMMUNOPATHOLOGY, 37, 271–279. DOI: 10.1007/s00281-015-0483-7CrossRefGoogle Scholar
  18. Kopp J., Schwede T. 2006. The SWISS-MODEL Repository: new features and functionalities. Nucleic Acids Research, 34, 315–318. DOI: 10.1093/nar/gkj056CrossRefGoogle Scholar
  19. Kyte J., Doolittle R.F. 1982. A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157, 105–132. DOI: 10.1016/0022-2836(82)90515-0CrossRefGoogle Scholar
  20. Liu K.Y., Zhang D.B., Wei Q.K., Li J., Li G.P., Yu J.Z. 2006. Biological role of surface Toxoplasma gondii antigen in development of vaccine. World Journal of Gastroenterology, 12, 2363–2368. DOI: 10.3748/WJG.v12.i15.2363CrossRefGoogle Scholar
  21. Nielsen H.V., Lauemoller S.L., Christiansen L., Buus S., Fomsgaard A., Petersen E. 1999. Complete protection against lethal Toxoplasma gondii infection in mice immunized with a plasmid encoding the SAG1 gene. Infection and Immunity, 67, 6358–6363. DOI: 10.1016/S0960-9822(99)80167-5PubMedPubMedCentralGoogle Scholar
  22. Ong Y.C., Reese M.L., Boothroyd J.C. 2010. Toxoplasma rhoptry protein16 (ROP16) subverts host function by direct tyrosine phosphorylation of STAT6. Journl of Biological Chemistry, 285, 28731–28740. DOI: 10.1074/jbc.M110.112359CrossRefGoogle Scholar
  23. Romano P., Giugno R., Pulvirenti A. 2011. Tools and collaborative environments for bioinformatics research. Briefings in Bioinformatics, 12, 549–561. DOI: 10.1093/bib/bbr055CrossRefGoogle Scholar
  24. Siachoque H., Guzman F., Burgos J., Patarroyo M.E., Gomez Marin J.E. 2006. Toxoplasma gondii: immunogenicity and protection by P30 peptides in a murine model. Experimental Parasitology, 114, 62–65. DOI: 10.1016/j.exppara.2006.02.005CrossRefGoogle Scholar
  25. Subramani A., Floudas C.A. 2012. Structure prediction of loops with fixed and flexible stems. The Journal of Physical Chemistry B, 116, 6670–6682. DOI: 10.1021/jp2113957CrossRefGoogle Scholar
  26. Tong J.C., Tammi M.T. 2008. Prediction of protein allergenicity using local description of amino acid sequence. Frontiers in Bioscience Landmark, 13, 6072–6087. DOI: org/10.2741/3138CrossRefGoogle Scholar
  27. Van Regenmortel MH. 2009. What is a B-cell epitope?. Methods in Molecular Biology, 524, 3–20. DOI: 10.1007/978-1-59745-450-6_1CrossRefGoogle Scholar
  28. Wang Y.H., Wang G.X., Ou J.T., Yin H., Zhang D.L. 2014. Analyzing and identifying novel B cell epitopes within Toxoplasma gondii GRA4. Parasites & Vectors, 7, 474. DOI: https://dx.doi.org/10.1186/s13071-014-0474-xCrossRefGoogle Scholar
  29. Wang Y.H., Wang M., Wang G.X., Pang A.N., Fu B.Q., Yin H., et al. 2011. Increasedsurvival time in mice vaccinated with a branched lysine multipleantigenic peptide containing B- and T-cell epitopes from T. gondii antigens. Vaccine, 29, 8619–8623. DOI: 10.1016/j.vaccine.2011.09.016CrossRefGoogle Scholar
  30. Welling G.W., Weijer W.J., Van der Zee R., Welling-Wester S. 1985. Prediction of sequential antigenic regions in proteins. FEBS Letters, 188, 215–218. DOI: 10.1016/0014-5793(85)80374-4CrossRefGoogle Scholar
  31. Yamamoto M., Standley D.M., Takashima S., Saiga H., Okuyama M., Kayama H., et al. 2009. A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation ofStat3. Journal of Experimental Medicine, 206, 2747–2760. DOI: 10.1084/jem.20091703CrossRefGoogle Scholar
  32. Yuan Z.G., Zhang X.X., He X.H., Petersen E., Zhou D.H., He Y., et al. 2011. Protective immunity induced by Toxoplasma gondii rhoptry protein 16 against toxoplasmosis in mice. Clinical and Vaccine Immunology, 18, 119–124. DOI: 10.1128/CVI.00312-10CrossRefGoogle Scholar
  33. Yuan Z.G., Zhang X.X., Lin R.Q., Petersen E., He S., Yu M., et al. 2011. Protective effect against toxoplasmosis in mice induced by DNA immunization with gene encoding Toxoplasma gondii ROP18. Vaccine, 29, 6614–6619. DOI: 10.1016/j.vaccine.2011.06.110CrossRefGoogle Scholar
  34. Zhang T.E., Yin L.T., Li R.H., Wang H.L., Meng X.L., Yin G.R. 2015. Protective immunity induced by peptides ofAMA1, RON2 and RON4 containing T-and B-cellepitopes via an intranasal route against toxoplasmosis in mice. Parasites & Vectors, 8, 15. DOI: 10.1186/s13071-015-0636-5CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2017

Authors and Affiliations

  • Jian Zhou
    • 1
  • Gang Lu
    • 2
  • Lin Wang
    • 3
  • Aihua H. Zhou
    • 4
  • Yali L. Han
    • 2
  • Jingjing J. Guo
    • 2
  • Pengxia X. Song
    • 5
  • Huaiyu Y. Zhou
    • 2
  • Hua Cong
    • 2
  • Ming Hou
    • 6
  • Shenyi Y. He
    • 2
    Email author
  1. 1.Department of Orthopedics, The Second Xiangya HospitalCentral South UniversityChangsha, HunanPeople’s Republic of China
  2. 2.Department of ParasitologyShandong University School of MedicineJinan, Shandong ProvincePeople’s Republic of China
  3. 3.Department of Ji Nan Children’s HospitalJinan, Shandong ProvincePeople’s Republic of China
  4. 4.Department of Pediatrics, Provincial Hospital Affiliated to Shandong UniversityShandong University School of MedicineJinan, Shandong ProvincePeople’s Republic of China
  5. 5.Department of MedicineQuzhou College of TechnologyQuzhouPeople’s Republic of China
  6. 6.Department of Hematology, Qilu HospitalShandong UniversityJinanChina

Personalised recommendations