Advertisement

Acta Parasitologica

, Volume 62, Issue 3, pp 493–501 | Cite as

Snail species diversity impacts the infection patterns of Echinostoma spp.: Examples from field collected data

  • Michael R. ZimmermannEmail author
  • Kyle E. Luth
  • Gerald W. Esch
Review

Abstract

Rapid losses of biodiversity due to the changing landscape have spurred increased interest in the role of species diversity and disease risk. A leading hypothesis for the importance of biodiversity in disease reduction is the dilution effect, which suggests that increasing species diversity within a system decreases the risk of disease among the organisms inhabiting it. The role of species diversity in trematode infection was investigated using field studies from sites across the U.S. to examine the impact of snail diversity in the infection dynamics of both first and second intermediate larval stages of Echinostoma spp. parasites. The prevalence of Echinostoma spp. sporocysts/rediae infection was not affected by increases in snail diversity, but significant negative correlations in metacercariae prevalence and intensity with snail diversity were observed. Additionally, varying effectiveness of the diluting hosts was found, i.e., snail species that were incompatible first intermediate hosts for Echinostoma spp. were more successful at diluting the echinostome parasites in the focal species, while H. trivolvis, a snail species that can harbor the first intermediate larval stages, amplified infection. These findings have important implications not only on the role of species diversity in reducing disease risk, but the success of the parasites in completing their life cycles and maintaining their abundance within an aquatic system.

Keywords

Dilution effect biodiversity Echinostoma metacercaria snail-trematode interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson J.W., Fried B. 1987. Experimental infection of Physa heterostropha, Helisoma trivolvis, and Biomphalaria glabrata (Gastropoda) with Echinostoma revolutum (Trematoda) cercariae. Journal of Parasitology 73: 49–54. DOI: 10.2307/3282342PubMedGoogle Scholar
  2. Begon M. 2008. Effects of host diversity on disease dynamics. In: R.S. Ostfeld, F. Keesing, V.T. Eviner (Eds) Infectious disease ecology: Effect of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton, NJ USA, pp. 12–29Google Scholar
  3. Benoy G.A., Nudds T.D., Dunlop E. 2002. Patterns of habitat and invertebrate diet overlap between tiger salamanders and ducks in prairie potholes. Hydrobiologia, 481, 47–59 DOI:10.1023/A:1021260920095CrossRefGoogle Scholar
  4. Boss C.N., Laman T.G., Blankespoor H.D. 1984. Dispersal movements of four species of pulmonate and operculate snails in Douglas Lake, Michigan. Nautilus, 98, 80–83Google Scholar
  5. Brown K.M. 1982. Resource overlap and competition in pond snails: An experimental analysis. Ecology, 63, 412–422. DOI: 10.2307/1938959CrossRefGoogle Scholar
  6. Bush A.O., Kennedy C.R. (1994) Host fragmentation and helminth parasites: Hedging your bets against extinction. International Journal for Parasitology, 24, 1333–1343. DOI: 10.1016/0020-7519(94)90199-6CrossRefGoogle Scholar
  7. Bush A.O., Lafferty K.D., Lotz L.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575–583. DOI: 10.2307/3284227CrossRefGoogle Scholar
  8. Byers J.E., Blakeslee A.M.H., Linder E., Cooper A.B., Maguire T.J. 2008. Controls of spatial variation in the prevalence of trematode parasites infecting a marine snail. Ecology, 89, 439–451. DOI: 10.1890/06-1036.1CrossRefGoogle Scholar
  9. Chase J.M., Wilson W.G., Richards S.A. 2001. Foraging trade-offs and resource patchiness: Theory and experiments with a freshwater snail community. Ecology Letters, 4, 304–312. DOI:10.1046/j.1461-0248.2001.00216.xCrossRefGoogle Scholar
  10. Chase J.M. 2003. Experimental evidence for the alternative stable equilibria in a benthic pond food web. Ecology Letters, 6, 733–741. DOI: 10.1046/j.1461-0248.2003.00482.xCrossRefGoogle Scholar
  11. Clampitt P.T. 1975. How fast is a snail’s pace? Active and passive dispersal of Physa integra in Douglas Lake, Michigan. Malacology Review, 8, 121Google Scholar
  12. Combes C., Mone H. 1987. Possible mechanisms of the decoy effect in Schistosoma mansoni transmission. International Journal for Parasitology, 17, 971–975. DOI: 10.1016/0020-7519(87)90017-8CrossRefGoogle Scholar
  13. Combes C. (Ed.) 2001. Parasitism. The Ecology and Evolution of Intimate Interactions. The University of Chicago Press Ltd, LondonGoogle Scholar
  14. Cooper N., Griffin R., Franz M., Omotayo M., Nunn C.L. 2012. Phylogenetic host specificity and understanding parasite sharing in primates. Ecology Letters, 15, 1370–1377. DOI: 10.1111/j.1461-0248.2012.01858.xCrossRefGoogle Scholar
  15. Detwiler J.T., Minchella D.J. 2009. Intermediate host availability masks the strength of experimentally derived colonization patterns in echinostome trematodes. International Journal for Parasitology, 39, 585–590. DOI: 10.1016/j.ijpara.2008.10.008CrossRefGoogle Scholar
  16. Detwiler J. T., Bos D. H., Minchella D. J. 2010. Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. Molecular Phylogenetics and Evolution 55, 611–620. DOI: 10.1016/j.ympev.2010.01.004CrossRefGoogle Scholar
  17. Detwiler J.T., Zajac A.M., Minchella D.J., Belden L.K. 2012. Revealing cryptic parasite diversity in a definitive host: Echinostomes in muskrats. Journal of Parasitology, 98, 1148–1155. DOI: 10.1645/GE-3117.1CrossRefGoogle Scholar
  18. Dillon R.T. (Ed.) 2000. The ecology of freshwater molluscs. Cambridge University Press, Cambridge, U.K.Google Scholar
  19. Emelianov I. 2007. How adaptive is parasite species diversity? International Journal for Parasitology, 37, 851–860. DOI:10.1016/j.ijpara.2007.04.010CrossRefGoogle Scholar
  20. Esteban J.G., Munoz-Antoli C. 2009. Echinostomes: Systematics and life cycles. In: B.R. Fried, R. Toledo (Eds) The biology of echinostomes: From the molecule to the community. Springer, LLC, New York, NY USA, pp. 1–34Google Scholar
  21. Fernandez J., Esch G.W. 1991. The component community structure of larval trematodes in the pulmonate snail Helisoma anceps. Journal of Parasitology, 77, 540–550. DOI: 10.2307/3283157CrossRefGoogle Scholar
  22. Fried B., Bennett M. C. 1979. Studies on encystment of Echinostoma revolutum cercariae. Journal of Parasitology 65, 38–40. DOI:10.2307/3280199CrossRefGoogle Scholar
  23. Georgieva S., Faltýnková A., Brown R., Blasco-Costa I., Soldánová M., Sitko J., et al. 2014. Echinostomarevolutum’ (Digenea: Echinostomatidae) species complex revisted: Species delimitation based on novel molecular and morphological data gathered in Europe. Parasites and Vectors 7, 520. DOI: 10.1186/s13071-014-0520-8PubMedGoogle Scholar
  24. Hopper J.V., Poulin R., Thiltges D.W. 2008. Buffering role of the intertidal anemone Anthopleura aureoradiata in cercarial transmission from snails to crabs. Journal of Experimental Marine Biology and Ecology, 367, 153–156. DOI:10.1016/j.jembe.2008.09.013CrossRefGoogle Scholar
  25. Johnson P.T.J., Hartson R.B., Larson D.J., Sutherland D.R. 2008. Diversity and disease: Community structure drives parasite transmission and host fitness. Ecology Letters, 11, 1017–1026. DOI: 10.1111/j.1461-0248.2008.01212.xCrossRefGoogle Scholar
  26. Johnson P.T.J., Lund P.J., Hartson R.B., Yoshino T.P. 2009. Community diversity reduces Schistosoma mansoni transmission, host pathology, and human infection risk. Proceedings of the Royal Society B: Biological Sciences, 276, 1657–1663. DOI: 10.1098/rspb.2008.1718CrossRefGoogle Scholar
  27. Johnson P.T.J., McKenzie V.J. 2009. Effects of environmental change on helminth infections in amphibians: Exploring the emergence of Ribeiroia and Echinostoma infections in North America. In: B.R. Fried, R. Toledo (Eds) The biology of echinostomes: From the molecule to the community. Springer, LLC, New York, NY, pp. 249–280.CrossRefGoogle Scholar
  28. Johnson P.T.J., Thieltges D.W. 2010. Diversity, decoys and the dilution effect: How ecological communities affect disease risk. Journal of Experimental Biology, 213, 961–970. DOI: 10.1242/jeb.037721CrossRefGoogle Scholar
  29. Johnson P.T.J., Preston D.L., Hoverman J.T., Henderson J.S., Paull S.H., Richgels K.L.D., Redmond M.D. 2012. Species diversity reduces parasite infection through cross-generational effects on host abundance. Ecology, 93, 56–64. DOI: 10.1890/11-0636.1CrossRefGoogle Scholar
  30. Johnson P.T.J., Preston D.L., Hoverman J.T., Richgels K.L.D. 2013. Biodiversity decreases disease through predictable changes in host community competence. Nature, 494, 230–234. DOI: 10.1038/nature11883CrossRefGoogle Scholar
  31. Keesing F., Holt R.D., Ostfeld R.S. 2006. Effects of species diversity on disease risk. Ecology Letters, 9, 485–498. DOI: 10.1111/j.1461-0248.2006.00885.xCrossRefGoogle Scholar
  32. Koh L.P., Dunn R.R., Sodhi N.S., Colwell R.K., Proctor H.C., Smith V.S. 2004. Species coextinction and the biodiversity crisis. Science, 305, 1632–1634. DOI: 10.1126/science.1101101CrossRefGoogle Scholar
  33. Laracuente A., Brown R.A., Jobin W. 1979. Comparison of four species of snails as potential decoys to intercept schistosome miracidia. American Journal of Tropical Medicine and Hygeine, 28, 99–105CrossRefGoogle Scholar
  34. LoGuidice K., Ostfeld R.S., Schmidt K.A., Keesing F. 2003. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences, 100, 567–571. DOI: 10.1073/pnas.0233733100CrossRefGoogle Scholar
  35. LoGuidice K., Duerr S.T.K., Newhouse M.J., Schmidt K.A., Killilea M.E., Ostfeld R.S. 2008. Impact of host community composition on Lyme disease risk. Ecology, 89, 2841–2849. DOI: 10.1890/07-1047.1CrossRefGoogle Scholar
  36. Lootvoet A., Blanchet S., Gevrey M., Buisson L., Tudesque L., Loot G. 2013. Patterns and processes of alternative host use in a generalist parasite: Insights from a natural host-parasite interaction. Functional Ecology, 27, 1403–1414. DOI: 10.1111/1365-2435.12140CrossRefGoogle Scholar
  37. Maldonado A., Lanfredi R. M. 2009. Echinostomes in the wild. In: B.R. Fried, R. Toledo (Eds) The biology of echinostomes: From the molecule to the community. Springer, LLC, New York, NY, pp. 129–146CrossRefGoogle Scholar
  38. McCarthy A.M. 1999. The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum. (Digenea: Echinostomatidae). Parasitology, 118, 383–388CrossRefGoogle Scholar
  39. Mitchell C.E., Tilman D., Groth J.V. 2003. Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology, 83, 1713–1726. DOI: 10.1890/0012-9658(2002)083[1713:EOGPSD]2.0.CO;2CrossRefGoogle Scholar
  40. Morley N.J., Crane M., Lewis J.W. 2004a. Influence of cadmium exposure on the incidence of first intermediate host encystment by Echinoparyphium recurvatum cercariae in Lymnaea peregra. Journal of Helminthology, 78, 329–332. DOI: 10.1079/JOH2004267CrossRefGoogle Scholar
  41. Morley N.J., Lewis J.W., Adam M.E. 2004b. Metacercarial utilization of a naturally infected single species (Lymnaea peregra) snail community by Echinoparyphium recurvatum. Journal of Helminthology, 78, 51–56. DOI: 10.1079/JOH2003201CrossRefGoogle Scholar
  42. Orlofske S.A., Jadin R.C., Preston D.L., Johnson P.T.J. 2012. Parasite transmission in complex communities: Predators and alternative hosts alter pathogenic infections in amphibians. Ecology, 93, 1247–1253. DOI: 10.1890/11-1901.1CrossRefGoogle Scholar
  43. Osenberg C.W. 1989. Resource limitation, competitoin, and the influence of life history in a freshwater snail community. Oecologia, 79, 512–519. DOI: 10.1007/BF00378669CrossRefGoogle Scholar
  44. Ostfeld R.S., Keesing F. 2000a. Biodiversity and disease risk: The case of Lyme disease. Conservation Biology, 14, 722–728. DOI: 10.1046/j.1523-1739.2000.99014.xCrossRefGoogle Scholar
  45. Ostfeld R.S, Keesing F. 2000b. The function of biodiversity in the ecology of vector-borne zoonotic diseases. Canadian Journal of Zoology, 78, 2061–2078. DOI: 10.1139/z00-172CrossRefGoogle Scholar
  46. Perkins S.E., Cattadori I.M., Tagliapietra V., Rizzoli A.P., Hudson P.J. 2006. Localized deer absence leads to tick amplification. Ecology, 87, 1981–1986. DOI: 10.1890/0012-9658(2006)87 [1981:LDALTT]2.0.CO;2CrossRefGoogle Scholar
  47. Poulin R. (Ed.) 1998. Evolutionary ecology of parasites: From individuals to communities. Chapman and Hall, London, U.K.Google Scholar
  48. Sandland G J., Minchella D. J. 2003. Effects of diet and Echinostoma revolutum infection on energy allocation patterns in juvenile Lymnaea elodes snails. Oecologia 134: 479–486. DOI: 10.1007/s00442-002-1127-xCrossRefGoogle Scholar
  49. Schell S.C. (Ed.) 1985. Handbook of trematodes of North America north of Mexico. University of Idaho Press, Moscow, ID, USA Received:January 10, 2017Google Scholar
  50. Schmidt K. A., Fried B. 1996. Emergence of cercariae of Echinostoma trivolvis from Helisoma trivolvis under different conditions. Journal of Parasitology 82: 674–676. DOI: 10.2307/3283806CrossRefGoogle Scholar
  51. Schotthoefer A.M., Cole R.A., Beasley V.R. 2003. Relationship of tadpole stage to location of echinostome cercariae encystment and the consequences for tadpole survival. Journal of Parasitology, 89, 475–482. DOI: 10.1645/0022-3395(2003)089[0475:ROTSTL]2.0.CO;2CrossRefGoogle Scholar
  52. Sheldon S.P. 1987. The effects of herbivorous snails on submerged communities in Minnesota lakes. Ecology, 68, 1920–1931. DOI: 10.2307/1939883CrossRefGoogle Scholar
  53. Sorensen R. E., Minchella D. J. 1998. Parasite influences on host life history: Echinostoma revolutum parasitism of Lymnaea elodes snails. Oecologia, 115, 188–195. DOI: 10.1007/s004420050507CrossRefGoogle Scholar
  54. Swamikannu X., Hoagland K. 1989. Effects of snail grazing on the diversity and structure of a periphyton community in a eutrophic pond. Canadian Journal of Aquatic Science, 46, 1698–1704. DOI: 10.1139/f89-215CrossRefGoogle Scholar
  55. Swanson G.A., Meyer M.I. 1977. Impact of fluctuating water levels on feeding ecology of breeding blue-winged teal. Journal of Wildlife Management, 41, 426–433. DOI: 10.2307/3800511CrossRefGoogle Scholar
  56. Swanson G.A., Meyer M.I., Adomaitis V.A. 1985. Foods consumed by breeding mallards on wetlands of south-central North Dakota. Journal of Wildlife Management, 49, 197–203. DOI: 10.2307/3801871CrossRefGoogle Scholar
  57. Thieltges D.W., Jensen K.T., Poulin R. 2008. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology, 135, 407–426. DOI: 10.1017/S0031182007000248PubMedGoogle Scholar
  58. Thieltges D.W., Reise K., Prinz K., Jensen K.T. 2009. Invaders interfere with native parasite-host interactions. Biological Invasions, 11, 1421–1429. DOI: 10.1007/s10530-008-9350-yCrossRefGoogle Scholar
  59. Upatham E.S., Sturrock R.F. 1973. Field investigations on the effect of other aquatic animals on the infection of Biomphalaria glabrata by Schistosoma mansoni miracidia. Journal of Parasitology, 59, 448–453. DOI: 10.2307/3278770CrossRefGoogle Scholar
  60. Vanesky M.D., Liu X., Sauer E.L., Rohr J.R. 2013. Linking manipulative experiments to field data to test the dilution effect. Journal of Animal Ecology, 83, 557–565. DOI: 10.1111/1365-2656.12159CrossRefGoogle Scholar
  61. Zimmermann M.R., Luth K.E., Esch G.W. 2014. Differences in snail ecology lead to infection pattern variation of Echinostoma spp. larval stages. Acta Parasitologica, 59, 502–509. DOI: 10.2478/s11686-014-0275-6CrossRefGoogle Scholar
  62. Zimmermann M.R., Luth K.E., Esch G.W. 2015. Auto-infection by Echinostoma spp. cercariae in Helisoma anceps. Acta Parasitologica, 60, 700–706. DOI: 10.1515/ap-2015-0099.CrossRefGoogle Scholar
  63. Zimmermann M.R., Luth K.E. Esch G.W. 2016. Transmission pattern differences of miracidia and cercariae larval stages of digenetic trematode parasites. Acta Parasitologica, 61, 680–688. DOI: 10.1515/ap-2016-0095CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2017

Authors and Affiliations

  • Michael R. Zimmermann
    • 1
    • 2
    Email author
  • Kyle E. Luth
    • 2
  • Gerald W. Esch
    • 2
  1. 1.Department of BiologyShenandoah UniversityWinchesterUSA
  2. 2.Department of BiologyWake Forest UniversityWinston-SalemUSA

Personalised recommendations