Advertisement

Acta Parasitologica

, Volume 62, Issue 2, pp 382–385 | Cite as

Molecular identification of Thelandros scleratus and Thelastoma icemi (Nematoda: Oxyruida) using mitochondrial cox 1 sequences

  • Anshu Chaudhary
  • Garima Kansal
  • Neetu Singh
  • Kumari Shobhna
  • Manu Verma
  • Hridaya S. SinghEmail author
Article

Abstract

Two species of parasitic nematodes collected from the intestine of Brook’s House Gecko, Hemidactylus brooki and American cockroach, Periplaneta americana L. The parasites were identified as Thelandros scleratus and Thelastoma icemi by PCR amplification method. Subsequently, sequence analysis of mt cox1 (504 and 540 bp) for T. scleratus and T. icemi respectively revealed that these sequences showed maximum similarity of 90% (in case of T. scleratus), 77% (in case of T. icemi), to nematode sequences available on GenBank. To our knowledge, no cox1 sequence is available for both the species of family Pharyngodonidae and Thelastomatidae. This study represents the first mitochondrial DNA characterization of both species.

Keywords

Thelandros scleratus Thelastoma icemi cox1 Meerut India 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamson M.L. 1981. Parapharyngodon osteopili n. sp. (Pharyngodonidae: Oxyuroidea) and a revision of Parapharyngodon and Thelandros. Systematic Parasitology, 3, 105–117. DOI:10.1007/BF00012216CrossRefGoogle Scholar
  2. Anderson R.C., Chabanaud A.G., Willmott S. 2009. Keys to the nem-atode parasites of vertebrates: Archival volume. New York, CAB International, pp.480CrossRefGoogle Scholar
  3. Avise J.C. (Ed.) 1994. Molecular markers, natural history and evolution. Chapman and Hall, New York, pp. 512CrossRefGoogle Scholar
  4. Baker M.R. 1987. Synopsis of the Nematoda parasitic in amphibians and reptiles. Memorial University of Newfoundland Occasional Papers in Biology, 11, 1–325Google Scholar
  5. Baylis H.A. (Ed.) 1936. Nematoda. I. Ascaridoidea and Strongyloidea. The Fauna of British India. Taylor and Francis, London, UK, pp. 408Google Scholar
  6. Biswas P.K., Chakravarty G.K. 1963. The systematic studies of the zoo-parasitic oxyuroid nematodes. Zeitschrift für Parasitenkunde, 23, 411–428. DOI: 10.1007/BF00259929CrossRefGoogle Scholar
  7. Castaño-Fernández C., Zapatero-Ramos L.M., Solera-Puertas M.A., González-Santiago P.M. 1987. Descripción de Parapharyn-godon lilfordi n. sp. (Oxyuroidea, Pharyngodonidae) en Podarcis lilfordi (Reptilia, Lacertidae) de las Islas Baleares. Revista Ibérica de Parasitología, 47, 275–281Google Scholar
  8. Chatterji R.C. 1933. On a new nematode, Parapharyngodon maplestoni gen. nov., sp. nov., from a Burmese lizard. Annals of Tropical Medicine and Parasitology, 27, 131–134CrossRefGoogle Scholar
  9. Chitwood B.G. 1937. A revised classification of the Nematoda. In: (Ed. K.J. Skrjabin) Papers on Helminthology, 30 year Ju-bileum. All-Union Lenin Academy If Agricultural Sciences, Moscow, 69–80Google Scholar
  10. Courtright E.M., Wall D.H., Virginia R.A., Frisse L.M., Vida J.T., Thomas W.K. 2000. Nuclear and mitochondrial DNA sequence diversity in the Antarctic nematode Scottnema lind-sayae. Journal of Nematology, 32, 143–153PubMedPubMedCentralGoogle Scholar
  11. Falk B.G., Perkins S.L. 2013. Host specificity shapes population structure of pinworm parasites in Caribbean reptiles. Molecular Ecology, 22, 4576–4590. DOI:10.1111/mec.12410CrossRefGoogle Scholar
  12. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. DOI:10.2307/2408678CrossRefGoogle Scholar
  13. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c ox-idase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299PubMedGoogle Scholar
  14. Gray J.E. 1845. Catalogue of the specimens of lizards in the collection of the British Museum. Trustees of die British Museum/Edward Newman, London, xxvii + pp. 289Google Scholar
  15. Gibbons L.M. (Ed.) 2009. Keys to the nematode parasites of vertebrates: Supplementary volume. New York, CAB International, pp. 416CrossRefGoogle Scholar
  16. Hasegawa H., Hayashida S., Ikeda Y., Sato H. 2009. Hypervariable regions in 18S rDNA of Strongyloides spp. as markers for species-specific diagnosis. Parasitology Research, 104, 869–874. DOI: 10.1007/s00436-008-1269-9CrossRefGoogle Scholar
  17. Hering-Hagenbeck S.F.B.N., Petter A.J., Boomker J. 2002. Redescription of some Spauligodon spp., and Parapharyngodon spp., and of Skrjabinodon mabyae (Sandground, 1936) Inglis, 1968 (Pharyngodonidae: Oxyuroidea) from insectivorous South African lizards. Onderstepoort Journal of Veterinary Research, 69, 7–29PubMedGoogle Scholar
  18. Jex A.R., Schneider M.A., Rose H.A., Cribb T.H. 2005. The Thelas-tomatoidea (Nematoda: Oxyurida) of two sympatric Panesthi-inae (Insecta: Blattodea) from south-eastern Queensland, Australia: taxonomy, species richness and host specificity. Nematology, 7, 543–575. DOI: 10.1163/156854105774384741CrossRefGoogle Scholar
  19. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nu-cleotide sequences. Journal of Molecular Evolution, 16, 111–120. DOI: 10.1007/BF01731581CrossRefGoogle Scholar
  20. Lazarova S.S., Malloch G., Oliveira C.M.G., Hübschen J., Neilson R. 2006. Ribosomal and Mitochondrial DNA Analyses of Xiphinema americanum Group Populations. Journal of Nematology, 38, 404–410PubMedPubMedCentralGoogle Scholar
  21. Leidy J. 1849. New genera and species of Entozoa. Proceedings of the National Academy of Sciences of the United States of America, 4, 225–233Google Scholar
  22. Nei M., Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York, pp. 333Google Scholar
  23. Rao P.N. 1958. Studies on the nematode parasites of insects and other arthropods. Arquivos do Museu Nacional, 46, 33–83Google Scholar
  24. Schwenk J.M. 1926. Fauna parasitologia des blattoides do Brasil. Sciencia Medica Anno IV, 9, 3–16Google Scholar
  25. Shah M.M. 2007. Some studies on insect parasitic nematodes (Oxyurida, Thelastomatoidea, Thelastomatidae) from Ma-nipur, North-East India. Acta Parasitologica, 52, 346–362. DOI: 10.2478/s11686-007-0051-yGoogle Scholar
  26. Singh H.S., Kaur H. 1988. On a new nematode, Hammerschmidtiella bisiri n. sp. from Periplaneta americana Linn. Indian Journal of Parasitology, 12, 187–189Google Scholar
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739. DOI:10.1093/molbev/msr121CrossRefGoogle Scholar
  28. Travassos L. 1923. Informações sobre a fauna helminthologica de Mato Grosso. Folha Medica. Rio de Janeir), 4, 58–60. (In Portuguese)Google Scholar
  29. Travassos L. 1929. Contribuicno preliminary a sistemática dos ne-matodeos dos artropodes. Memorias do Instituto Oswaldo Cruz, 5, 19–25CrossRefGoogle Scholar
  30. Wedl K. 1861/62. Zur Helminthenfauna Egyptens. Sitzungsberichte Mathematisch-Naturwissenschaftliche Akademie der Wissenschaften, 44, 463–482. (In German)Google Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2017

Authors and Affiliations

  • Anshu Chaudhary
    • 1
  • Garima Kansal
    • 1
  • Neetu Singh
    • 1
  • Kumari Shobhna
    • 1
  • Manu Verma
    • 1
  • Hridaya S. Singh
    • 1
    Email author
  1. 1.Molecular Taxonomy Laboratory, Department of Zoology, University RoadChaudhary Charan Singh UniversityMeerutIndia

Personalised recommendations