Advertisement

Acta Parasitologica

, Volume 61, Issue 4, pp 680–688 | Cite as

Tranmission pattern differences of miracidia and cercariae larval stages of digenetic trematode parasites

  • Michael R. ZimmermannEmail author
  • Kyle E. Luth
  • Gerald W. Esch
Article

Abstract

Digenetic trematodes have complex life cycles involving multiple hosts and free-living larval stages. Some species have 2 larval stages that infect snails, with miracidia and cercariae using these molluscs as first and second intermediate hosts, respectively. Although both larval stages may infect the same snail species, this is accomplished using different chemical cues and may be influenced by different biotic and abiotic factors. Significant differences in the infection patterns of these parasitic stages regarding host size and density were observed in 2 separate field studies. The prevalence of sporocysts/rediae and mean abundance of Echinostoma spp. metacercariae infection were positively correlated with host size, while the prevalence of Echinostoma spp. cercariae infection was positively correlated with host density across 5 different pulmonate snail species. Larger snails within a given species tend to be older and the increased exposure time may be responsible for the positive correlations with host size. Additionally, infection by miracidia in more vagile snail hosts was influenced by trematode species richness at a sample site, which may be attributed to increased encounter rate as a result of increased movement by the snail hosts. Echinostoma spp. metacercariae prevalence was influenced by host density, possibly due to high abundances of larval clones and their response to more generalized chemical cues attributed to low host specificity by cercariae. Although they can infect the same gastropod hosts, miracidia and cercariae infection are dependent on different factors at both the individual and population level of their snail hosts.

Keywords

Trematode miracidia cercariae Echinostoma snail ecology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson R.M., Mercer J.G., Wilson R.A., Carter N.P. 1982. Transmission of Schistosoma mansoni from man to snail: Experimental studies of miracidial survival and infectivity in relation to larval age, water temperature, host size and host age. Parasitology, 85, 339–360. DOI: 10.1017/S0031182000055323CrossRefGoogle Scholar
  2. Boss C.N., Laman T.G., Blankespoor H.D. 1984. Dispersal movements of four species of pulmonate and operculate snails in Douglas Lake, Michigan. The Nautilus, 98, 80–83Google Scholar
  3. Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journalof Parasitology, 83, 575–583. DOI: 10.2307/3284227CrossRefGoogle Scholar
  4. Byers J.E., Blakeslee A.M.H., Linder E., Cooper A.B., Maguire T.J. 2008. Controls of spatial variation in the prevalence of trematode parasites infecting a marine snail. Ecology, 89, 439–451. DOI: 10.1890/06-1036.1CrossRefGoogle Scholar
  5. Campbell R.A. 1997. Host-finding behavior of Cotylurus flabelliformis (Trematoda: Strigeidae) cercariae for snail hosts. Folia Parasitologica, 44, 199–204Google Scholar
  6. Carter N.P., Anderson R.M., Wilson R.A. 1982. Transmission of Schistosoma mansoni from man to snail: Laboratory studies on the influence of snail and miracidial densities on transmission success. Parasitology, 85, 361–372. DOI: 10.1017/S0031182000055335CrossRefGoogle Scholar
  7. Charnov E., Orians G., Hyatt K. 1976. Ecological implications of resource depression. American Naturalist, 110, 247–259CrossRefGoogle Scholar
  8. Criscione C.D., Blouin M.S. 2007. Minimal selfing, few clones, and no among-host genetic structure in a hermaphroditic parasite with asexual larval propagation. Evolution, 60, 553–562. DOI: 10.1111/j.0014-3820.2006.tb01136.xCrossRefGoogle Scholar
  9. Detwiler J.T., Minchella D.J. 2009. Intermediate host availability masks the strength of experimentally-derived colonisation patterns in echinostome trematodes. International Journal for Parasitology, 39, 585–590. DOI: 10.1016/j.ijpara.2008.10.008CrossRefGoogle Scholar
  10. Detwiler J.T. 2010. The molecular ecology of echinostome trematodes: Elucidating the phylogenetics and transmission dynamics of a freshwater helminth parasite. Ph.D. Thesis, Purdue University, West Lafayette, Indiana, USA Dillon R.T. 2000. Gastropod autoecology. In: Dillon R. T. (Ed.). The ecology of freshwater molluscs, Cambridge University Press, Cambridge, UK, pp. 57–116Google Scholar
  11. Esch G.W., Fernandez J.C. 1994. Snail-trematode interactions and parasite community dynamics in aquatic systems: A review. The American Midland Naturalist, 131, 209–237. DOI: 10.2307/2426248CrossRefGoogle Scholar
  12. Esch G.W., Barger M.A., Fellis K.J. 2002. The transmission of digenetic trematodes: Style, elegance, complexity. Integrative Comparative Biology, 42, 304–312. DOI: 10.1093/icb/42.2.304CrossRefGoogle Scholar
  13. Esteban J.C., Munoz-Antoli C. 2009. Echinostomes: Systematics and life cycles. In: Fried B.R., and Toledo R. (Eds.) The biology of echinostomes: From the molecule to the community, Springer, LLC, New York, New York, pp. 1–34Google Scholar
  14. Evans N.A., Whitfield P.J., Dobson A.P. 1981. Parasite utilization of a host community: The distribution and occurrence ofmetacercarial cysts of Echinoparyphium recurvatum (Digenea: Echinostomatidae) in seven species of molluscs at Harting Pond, Sussex. Parasitology, 83, 1–12. DOI: 10.1017/S0031182000049982CrossRefGoogle Scholar
  15. Faltynkova A., Nasincova V., Kablaskova L. 2007a. Larval trematodes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in central Europe: A survey of species and key to their identification. Systematic Parasitology, 69, 155–178. DOI: 10.1007/s11230-007-9127-1CrossRefGoogle Scholar
  16. Faltynkova A., Nasincova V., Kablaskova L. 2007b. Larval trematodes (Digenea) of the great pond snail Lymnaea stagnalis (L.), (Gastropoda, Pulmonata) in central Europe: A survey of species and key to their identification. Parasite, 14, 39–51. DOI: 10.1051/parasite/2007141039CrossRefGoogle Scholar
  17. Fenton A., Fairbairn J.P., Norman R., Hudson PJ. Parasite transmission: Reconciling theory and reality. Journal of Animal Ecology, 71, 893–905. DOI: 10.1046/j.1365-2656.2002.00656.xCrossRefGoogle Scholar
  18. Fernandez J., Esch G.W. 1991a. Guild structure of larval trematods in the snail Helisoma anceps: Patterns and processes at the individual host level. Journal of Parasitology, 77, 528–539. DOI: 10.2307/3283156CrossRefGoogle Scholar
  19. Fernandez J., Esch G.W. 1991b. The component community structure of larval trematodes in the pulmonate snail Helisoma anceps. Journal of Parasitology, 77, 540–550. DOI: 10.2307/3283157CrossRefGoogle Scholar
  20. Haas W. 2003. Parasitic worms: Strategies of host finding, recognition and invasion. Zoology, 106, 349–364. DOI: 10.1078/0944-2006-00125CrossRefGoogle Scholar
  21. Haas W., Korner M., Hutterer E., Wegner M., Haberl B.. 1995. Finding and recognition of the snail intermediate hosts by 3 species of echinostome cercariae. Parasitology, 110, 133–142. DOI: 10.1017/S0031182000063897CrossRefGoogle Scholar
  22. Haberl B., Korner M., Spengler Y., Hertel J., Kalbe M., Haas W. 2000. Host-finding in Echinostoma caproni: Miracidia and cercariae use different signals to identify the same snail species. Parasitology, 120, 479–486CrossRefGoogle Scholar
  23. Hechinger R.F., Wood A.C., Kuris A.M. 2011. Social organization in a flatworm: Trematode parasites form soldier and reproductive castes. Proceedings of the Royal Society of London, 278, 656–665. DOI: 10.1098/rspb.2010.1753CrossRefGoogle Scholar
  24. Johnson P.T.J., Preston D.L., Hoverman J.T., Henderson J.S., Paull S.H., Richgels K.L.D., Redmond M.D. 2012. Species diversity reduces parasite infection through cross-generation effects on host abundance. Ecology, 93, 56–64. DOI: 10.1890/11-0636.1CrossRefGoogle Scholar
  25. Jokela J., Lively C.M. 1995. Spatial variation in infection by digenetic trematodes in a population of freshwater snails (Potamopyrgus antipodarum). Oecologia, 103, 509–517. DOI: 10.1007/BF00328690CrossRefGoogle Scholar
  26. Kalbe M., Haberl B., Haas W. 2000. Snail host finding by Fasciola hepatica and Trichobilharzia ocellata: Compound analysis of “miracidia-attracting glycoproteins.” Experimental Parasitology, 96, 231–242. DOI: 10.1006/expr.2000.4579CrossRefGoogle Scholar
  27. Kuris A.M., Warren J. 1980. Echinostome cercarial penetration and metacercarial encystment as mortality factors for a second intermediate host, Biomphalaria glabrata. Journal of Parasitology, 66, 630–635. DOI: 10.2307/3280520CrossRefGoogle Scholar
  28. Kuris A.M., Lafferty K.D. 1994. Community structure: Larval trematodes in snail hosts. Annual Review of Ecology and Systematics, 25, 189–217CrossRefGoogle Scholar
  29. Loy C., Haas W. 2001. Prevalence of cercariae from Lymnaea stagnalis snails in a pond system in Southern Germany. Parasitology Research, 87, 878–882. DOI: 10.1007/s004360100462CrossRefGoogle Scholar
  30. McCarthy A.M. 1990. The influence of second intermediate host dispersion pattern upon the transmission of cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology, 101, 43–47. DOI: 10.1017/S0031182000079737CrossRefGoogle Scholar
  31. McCarthy A.M. 1999a. Photoperiodic cercarial emergence patterns of the digeneans Echinoparyphium recurvatum and Plagiorchis sp. from a mixed infection in Lymnaea peregra. Journal of Helminthology, 73, 59–62. DOI: 10.1017/S0022149X99 000074Google Scholar
  32. McCarthy A.M. 1999. The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum (Digenea: Echinosomatidae). Parasitology, 118, 383–388CrossRefGoogle Scholar
  33. Morley N.J. 2012. Thermodynamics of miracidial survival and metabolism. Parasitology, 139, 1640–1651. DOI: 10.1017/S00 31182012000960CrossRefGoogle Scholar
  34. Morley N.J., Crane M., Lewis J.W. 2004a. Influence of cadmium exposure on the incidence of first intermediate host encystment by Echinoparyphium recurvatum cercariae in Lymnaea peregra. Journal of Helminthology, 78, 329–332. DOI: 10.1079/JOH2004267CrossRefGoogle Scholar
  35. Morley N.J., Lewis J.W., Adam M.E. 2004b. Metacercarial utilization of a naturally infected single species (Lymnaea peregra) snail community by Echinoparyphium recurvatum. Journal of Helminthology, 78, 51–56. DOI: 10.1079/JOH2003201CrossRefGoogle Scholar
  36. Morley N.J., Lewis J.W. 2015. Thermodynamics of trematode infectivity. Parasitology, 142, 585–597. DOI: 10.1017/S00311 8201400163CrossRefGoogle Scholar
  37. Muñoz-Antoli C., Toledo R., Esteban J. 2000. The life cycle and transmission dynamics of the larval stages of Hypoderaeum conoideum. Journal of Helminthology, 74, 165–172. DOI: 10.1017/S0022149X00000238PubMedGoogle Scholar
  38. Muñoz-Antoli C., Trelis C.M., Espert A., Toledo R., Esteban J.G. 2003. Interactions related to non-host snails in the host-finding process of Euparyphium albuferensis and Echinostoma friedi (Trematoda: Echinostomatidae) miracidia. Parasitology Research, 91, 353–356. DOI: 10.1007/s00436-003-0968-5CrossRefGoogle Scholar
  39. Negron-Aponte H., Jobin W.R. 1977. Guidelines for spacing and timing of samples to detect populations of Schistosoma mansoni cercariae in the field. International Journal for Parasitology, 7, 123–126. DOI: 0.1016/0020-7519(77)90078-9CrossRefGoogle Scholar
  40. Rauch G., Kalbe M., Reusch T.B.H. How a complex life cycle can improve a parasite’s sex life. Journal of Evolutionary Biology, 18, 1069–1075. DOI: 10.1111/j.1420-9101.2005.00895.xCrossRefGoogle Scholar
  41. Sandland G.J., Goater C.P., Danylchuk A.J. Population dynamics of Ornithodiplostomum ptychocheilus metacercariae in fathead minnows (Pimephales promelas) from four northern Alberta lakes. Journal of Parasitology, 87, 744–748. DOI: 10.1645/0022-3395Google Scholar
  42. Sapp K.K., Esch G.W. 1994. The effects of spatial and temporal heterogeneity as structuring forces for parasite communities in Helisoma anceps and Physa gyrina. American Midland Naturalist, 132, 91–103. DOI: 10.2307/2426204CrossRefGoogle Scholar
  43. Schmidt K.A., B. Fried. 1996. Emergence of cercariae of Echinostoma trivolvis from Helisoma trivolvis under different conditions. Journal of Parasitology, 82, 674–676. DOI: 10.2307/3283806CrossRefGoogle Scholar
  44. Sorensen R.E., Minchella D.J. 1998. Parasite influences on host life history: Echinostoma revolutum parasitism of Lymnaea elodes snails. Oecologia, 115, 188–195. DOI: 10.1007/s004420050507CrossRefGoogle Scholar
  45. Toledo R., Muñoz-Antoli C., Perez M., Esteban J.G. 1999. Survival and infectivity of Hypoderaeum conoideum and Euparyphium albuferensis cercariae under laboratory conditions. Journal of Helmintology, 73, 177–182. DOI: 10.1017/S0022149X9900027XGoogle Scholar
  46. Toledo R., Espert A., Carpena I., Muñoz-Antoli C., Esteban J.G. 2003. An experimental study of the reproductive success of Echinostoma friedi (Trematoda: Echinostomatidae) in the golden hamster. Parasitology, 126, 433–441. DOI: 10.1017/S0031182003213068CrossRefGoogle Scholar
  47. Toledo R., Carpena I., Espert A., Sotillo J., Muñoz-Antoli C., Esteban J.G. 2006. Transmission success of Echinostoma friedi (Trematoda: Echinostomatidae) in rats. Journal of Parasitology, 92, 16–20. DOI: 10.1645/GE-574R1.1CrossRefGoogle Scholar
  48. Upatham E.S. 1972. Exposure or caged Biomphalariaglabrata (Say) to investigate dispersion of miracidia of Schistosoma mansoni Sambon in outdoor habitats in St. Lucia. Journal of Helminothology, 46, 297–306CrossRefGoogle Scholar
  49. Upatham E.S. 1973. Location of Biomphalaria glabrata (Say) by miracidia of Schistosoma mansoni Sambon in natural standing and running waters on the West Indian Island of St. Lucia. International Journal for Parasitology, 3, 289–297. DOI: 10.1016/0020-7519(73)90106-9CrossRefGoogle Scholar
  50. Upatham E.S. 1974. Infectivity of Schistosoma mansoni cercariae in natural St. Lucian habitats. Annals of Tropical Medicine & Parasitology, 68, 235–236. DOI: 10.1080/00034983.1974.11686941CrossRefGoogle Scholar
  51. Williams J.A., Esch G.W. 1991. Infra- and component community dynamics in the pulmonate snail Helisoma anceps, with special emphasis on the hemiurid trematode Halipegus occidualis. Journal of Parasitology, 77, 246–253. DOI: 10.2307/3283091CrossRefGoogle Scholar
  52. Wilson R.A., Taylor S.L. 1978. The effect of variations in host and parasite density on the level of parasitization of Lymnaea truncatula by Fasciola hepatica. Parasitology, 76, 91–98. DOI: 10.1017/S0031182000047429CrossRefGoogle Scholar
  53. Zimmermann M.R., Luth K.E., Esch G.W. 2014a. Differences in snail ecology lead to infection pattern variation of Echinostoma spp. larval stages. Acta Parasitologica, 59, 502–509. DOI: 10.2478/s11686-014-0275-6CrossRefGoogle Scholar
  54. Zimmermann M.R., Luth K.E., Esch G.W. 2014b. Microhabitat differences surrounding a pond affects the distribution of trematode parasites among a pulmonate snail community. Helminthologia, 51, 301–308. DOI: 10.2478/s11687-014-0245-4CrossRefGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2016

Authors and Affiliations

  • Michael R. Zimmermann
    • 1
    • 2
    Email author
  • Kyle E. Luth
    • 2
  • Gerald W. Esch
    • 2
  1. 1.Department of BiologyShenandoah UniversityWinchesterUSA
  2. 2.Department of BiologyWake Forest UniversityWinston-SalemUSA

Personalised recommendations