Advertisement

Acta Parasitologica

, Volume 60, Issue 2, pp 345–349 | Cite as

The lack of effectiveness of hyperbaric oxygenation as a treatment for Leishmania major in a mouse model

  • Ayelet Livneh
  • Ilan Youngster
  • Yossef El-On
  • Matitiahu Berkovitch
  • Ibrahim Abu-KishkEmail author
Research Note

Abstract

We aimed to study the effectiveness of hyperbaric oxygen therapy (HOT) (100% oxygen at 2 ATA for 70 minutes each session for 20 consecutive days) on BALB/c male mice infected with Leishmania major. Fifty-one mice were assigned to six groups. Group 1 was treated with HOT from 1 day after the inoculation. In Groups 2–5, treatment began when the cutaneous lesions appeared. Group 2 received HOT only, Group 3 received topical therapy with Leshcutan only, Groups 4 and 5 received a combination of HOT and Leshcutan for 5 and 10 days respectively, and Group 6 did not receive any treatment (control group). When comparing the control group with Group 1, treatment with HOT in Group 1 did not significantly affect the time of the appearance of the lesions. In contrast, mice treated with Leshcutan demonstrated a significant difference in lesion size and spleen dimensions as compared to the rest of the mice (p<0.001). The results show that HOT treatment has no positive effect on the course of Leishmaniasis in a BALB/c mice model infected with Leishmania major. Further studies are needed with a mouse model closer to humans and with different HOT protocols.

Keywords

Leishmania major hyperbaric oxygen therapy mouse model methylbenzethonium chloride paromomycin sulphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arana B.A., Mendoza C.E., Rizzo N.R., Kroeger A. 2001. Randomized, controlled, double-blind trial of topical treatment of cutaneous leishmaniasis with paromomycin plus methylbenzethonium chloride ointment in Guatemala. American Journal of Tropical Medicine and Hygiene, 65, 466–470CrossRefGoogle Scholar
  2. Arrias-Silva W.W., Collhone M.C., Ayres D.C., de Souza Souto P.C., Giorgio S. 2005. Effects of hyperbaric oxygen on Leishmania amazonensis promastigotes and amastigotes. Parasitology International, 54, 1–7CrossRefGoogle Scholar
  3. Arrias-Silva W.W., Pinto E.F., Rossi-Bergmann B., Giorgio S. 2006. Hyperbaric oxygen therapy reduces the size of Leishmania amazonensis-induced soft tissue lesions in mice. Acta Tropica 98, 130–136CrossRefGoogle Scholar
  4. Benson R.M., Minter L.M., Osborne B.A., Granowitz E.V. 2003. Hyperbaric oxygen inhibits stimulus-induced proinflammatory cytokine synthesis by human blood-derived monocytemacrophages. Clinical and Experimental Immunology, 13, 57–62CrossRefGoogle Scholar
  5. Bogdan C., Moll H., Solbach W., Röllinghoff M. 1990. Tumor necrosis factor alpha in combination with interferon-gamma, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. European Journal of Immunology, 20, 1131–1135CrossRefGoogle Scholar
  6. Croft S.L., Yardley V. 2002. Chemotherapy of leishmaniasis. Current Pharmaceutical Design, 8, 319–342CrossRefGoogle Scholar
  7. Desjeux P. 2004. Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology and Infectious Diseases, 27, 305–318CrossRefGoogle Scholar
  8. El-On J., Livishin R., Hamburger D., Even-Paz Z., Weinrauch L. 1986. Topical treatment of cutaneous leishmaniasis. The Journal of Investigative Dermatology, 87, 284–8CrossRefGoogle Scholar
  9. El-On J., Halevy S., Grunwald M.H., Weinrauch L. 1992. Topical treatment of Old World cutaneous leishmaniasis caused by Leishmania major: a double-blind control study. Journal of the American Academy of Dermotology, 27, 22–31Google Scholar
  10. El-On J., Bazarsky E, Sneir R. 2007. Leishmania major: in vitro and in vivo anti-leishmanial activity of paromomycin ointment (Leshcutan) combined with the immunomodulator Imiquimod. Experimental Parasitology, 116, 156–162CrossRefGoogle Scholar
  11. Giorgio S., Linares E., Ischiropoulos H., Von Zuben F.J., Yamada A., Augusto O. 1998. In vivo formation of electron paramagnetic resonance-detectable nitric oxide and of nitrotyrosine is not impaired during murine leishmaniasis. Infectious Immunology, 66, 807–814Google Scholar
  12. Grimaldi Jr. G., Tesh R.B. 1993. Leishmaniases of the New World: current concepts and implications for future research. Clinical Microbiology Reviews, 6, 230–250.CrossRefGoogle Scholar
  13. Herwaldt B.L. 1999. Leishmaniasis. Lancet, 354, 1191–1199CrossRefGoogle Scholar
  14. Knighton D.R., Silver I.A., Hunt T.K. 1981. Regulation of woundhealing angiogenesis — effect of oxygen gradients and inspired oxygen concentration. Surgery, 90, 262–270PubMedGoogle Scholar
  15. Kranke P, Bennett M.H., Martyn-St James M., Schnabel A., Debus S.E. 2012. Hyperbaric oxygen therapy for chronic wounds. The Chocrane Datebase of Systematic Reviews, 4, CD004123Google Scholar
  16. Labrouche S., Javorschi S., Leroy D., Gbikpi-Benissan G., Freyburger G. 1999. Influence of hyperbaric oxygen on leukocyte functions and haemostasis in normal volunteer divers. Thrombosis Research, 96, 309–315CrossRefGoogle Scholar
  17. Lee S.A., Hasbun R. 2003. Therapy of cutaneous leishmaniasis. International Journal of Infectious Diseases, 7, 86–93CrossRefGoogle Scholar
  18. Liew F.Y. 1989. Functional heterogeneity of CD4+ T cells in leishmaniasis. Immunology Today, 10, 40–45CrossRefGoogle Scholar
  19. Muhvich K.H., Anderson L.H., Criswell D.W., Mehm W.J. 1993. Hyperbaric hypoeroxia enhances the lethal effects of amphotericin B in Leishmania braziliensis panamensis. Undersea Hyperbaric Medicine, 20, 321–328PubMedGoogle Scholar
  20. Navin T.R., Arana B.A., Arana F.E., Berman J.D., Chajon J.F. 1992. Placebo-controlled clinical trial of sodium stibogluconate (Pentostam) versus ketoconazole for treating cutaneous leishmaniasis in Guatemala. The Journal of Infectious Diseases 165, 528–34CrossRefGoogle Scholar
  21. Neal R.A., Allen S., McCoy N., Olliaro P., Croft S.L. 1995. The sensitivity of Leishmania species to aminosidine. The Journal of Antimicrobial Chemotherapy, 35, 577–584CrossRefGoogle Scholar
  22. Singer S.R., Abramson N., Shoob H., Zaken O., Zentner G., Stein-Zamir C. 2008. Ecoepidemiology of cutaneous leishmaniasis outbreak, Israel. Emerging Infectious Diseases, 14, 1424–1426CrossRefGoogle Scholar
  23. Sitkovsky M.V., Lukashev D., Apasov S., Kojima H., Koshiba M., Caldwell C, Ohta A., Thiel M. 2004. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annuual Review of Imunology, 22, 657–682CrossRefGoogle Scholar
  24. Smith R.M., Mohideen P. 1991. One hour 1 ATA oxygen enhances rat alveolar macrophage chemiluminescence and fungal cytotoxicity. American Journal of Physiology, 260, L457–L463CrossRefGoogle Scholar
  25. Tandara A.A., Mustoe T.A. 2004. Oxygen in wound healing - more than a nutrient. World Journal of Surgery, 28, 294–300CrossRefGoogle Scholar
  26. Thom S.R. 2011. Hyperbaric oxygen: its mechanisms and efficacy. Plastic Reconstructive Surgery, 127 Suppl 1, 131S-141SGoogle Scholar

Copyright information

© Witold Stefański Institute of Parasitology, Polish Academy of Sciences 2015

Authors and Affiliations

  • Ayelet Livneh
    • 1
    • 3
  • Ilan Youngster
    • 1
    • 3
  • Yossef El-On
    • 2
  • Matitiahu Berkovitch
    • 1
    • 3
  • Ibrahim Abu-Kishk
    • 1
    • 3
  1. 1.Pediatric Division, Assaf Harofeh Medical CenterIsrael
  2. 2.Parasitology Laboratory, Soroka University Medical CenterBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.Affiliated to the Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations