Advertisement

Acta Parasitologica

, Volume 60, Issue 1, pp 164–172 | Cite as

Effect of structurally related flavonoids from Zuccagnia punctata Cav. on Caenorhabditis elegans

  • Romina E. D’Almeida
  • María R. AlbertoEmail author
  • Phillip Morgan
  • Margaret Sedensky
  • María I. Isla
Article

Abstract

Zuccagnia punctata Cav. (Fabaceae), commonly called jarilla macho or pus-pus, is being used in traditional medicine as an antiseptic, anti-inflammatory and to relieve muscle and bone pain. The aim of this work was to study the anthelmintic effects of three structurally related flavonoids present in aerial parts of Z. punctata Cav. The biological activity of the flavonoids 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2′,4′-dihydroxychalcone (DHC) was examined in the free-living nematode Caenorhabditis elegans. Our results showed that among the assayed flavonoids, only DHC showed an anthelmintic effect and alteration of egg hatching and larval development processes in C. elegans. DHC was able to kill 50% of adult nematodes at a concentration of 17 μg/mL. The effect on larval development was observed after 48 h in the presence of 25 and 50 μg/mL DHC, where 33.4 and 73.4% of nematodes remained in the L3 stage or younger. New therapeutic drugs with good efficacy against drug-resistant nematodes are urgently needed. Therefore, DHC, a natural compound present in Z. punctata, is proposed as a potential anthelmintic drug.

Keywords

7-hydroxyflavanone 3,7-dihydroxyflavone 2′,4′-dihydroxychalcone anthelmintic effect Caenorhabditis elegans 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceves J., Erlij D., Martinez-Maranon R. 1970. The mechanism of the paralyzing action of tetramisole on Ascaris somatic muscle. British Journal Pharmacology, 38, 602–607. DOI: 10.1111/j.1476-5381.1970.tb10601.xCrossRefGoogle Scholar
  2. Agüero M.B., González M., Lima B., Svetaz L., Sanchez M., Zacchino S., Feresin G., Schmeda-Hirschmann G., Palermo J., Wunderlin D., Tapia A. 2010. Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) Exudates: Phytochemical characterization and antifungal activity. Journal of Agricultural and Food Chemistry, 58, 194–201. DOI: 10.1021/jf902991tCrossRefPubMedCentralGoogle Scholar
  3. Artal-Sanz M., de Jong L., Tavernarakis N. 2006. Caenorhabditis elegans: A versatile platform for drug discovery. Biotechnology Journal, 1, 1405–1418. DOI: 10.1002/biot.200600176CrossRefPubMedCentralGoogle Scholar
  4. Attar S., O’Brien Z., Alhaddad H., Golden M.L., Calderon-Urrea A. 2011. Ferrocenyl chalcones versus organic chalcones: A comparative study of their nematocidal activity. Bioorganic and Medicinal Chemistry, 19, 2055–2073. DOI: 10.1016/j.bmc.2011.01.048CrossRefPubMedCentralGoogle Scholar
  5. Avery L. and Shtonda B.B. 2003. Food transport in the Caenorhabditis elegans pharynx. The Journal of Experimental Biology, 206, 2441–2457. DOI: 10.1242/jeb.00433CrossRefPubMedCentralGoogle Scholar
  6. Bull K., Cook A., Hopper N.A., Harder A., Holden-Dye L., Walker R.J. 2007. Effects of the novel anthelmintic emodepside on the locomotion, egg-laying behaviour and development of Caenorhabditis elegans. International Journal for Parasitology, 37, 627–636. DOI: 10.1016/j.ijpara.2006.10.013CrossRefPubMedCentralGoogle Scholar
  7. Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics, 77, 71–94. DOI: 10.1895/wormbook.1.101.1PubMedPubMedCentralGoogle Scholar
  8. Chieli E., Romiti N., Zampini I.C., Garrido G., Isla M.I. 2012. Effects of Zuccagnia punctata extracts and their flavonoids on the function and expression of ABCB1/P-glycoprotein multidrug transporter. Journal of Ethnopharmacology 144, 797–801. DOI: 10.1016/j.jep.2012.10.012Google Scholar
  9. Collins J.J., Evason K., Kornfeld K. 2006. Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Experimental Gerontology, 41, 1032–1039. DOI:10.1016/j.exger.2006.06.038CrossRefPubMedCentralGoogle Scholar
  10. Cox G.N., Kusch M., Edgar R.S. 1981. Cuticle of Caenorhabditis elegans: its isolation and partial characterization. The Journal of Cell Biology, 90, 7–17. DOI: 10.1083/jcb.90.1CrossRefPubMedCentralGoogle Scholar
  11. Daglia M. 2012. Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174–181. DOI: 10.1016/j.copbio.2011.08.007CrossRefPubMedCentralGoogle Scholar
  12. de la Rocha N., María A.O., Gianello J.C., Pelzer L. 2003. Cytoprotective effects of chalcones from Zuccagnia punctata and melatonin on gastroduodenal tract in rats. Pharmacology Research, 48, 97–99. DOI: 10.1016/S1043-6618(03)00063-XCrossRefGoogle Scholar
  13. de Mello T.F.P., Bitencourt H.R., Pedroso R.B., Aristides S.M.A., Lonardoni M.V.C., Silveira T.G.V. 2014. Leishmanicidal activity of synthetic chalcones in Leishmania (Viannia) braziliensis. Experimental Parasitology, 136, 27–34. DOI: 10.1016/j.exppara.2013.11.003CrossRefPubMedCentralGoogle Scholar
  14. Franks C.J., Pemberton D., Vinogradova I., Cook A., Walker J.R., Holden L. 2002. Ionic basis of the resting membrane potential and action potential in the pharyngeal muscle of Caenorhabditis elegans. Journal of Neurophysiology, 87, 954–961. DOI: 10.1152/jn.00233.2001CrossRefPubMedCentralGoogle Scholar
  15. Gandhi S., Santelli J., Mitchell D.H., Stiles J., Sanadi D. 1980. A simple method for maintaining large, aging populations of Caenorhabditis elegans. Mechanism of Ageing and Development 12, 137–150. DOI:10.1016/0047-6374(80)90090-1CrossRefGoogle Scholar
  16. Geary T.G., Thompson D.P. 2001. Caenorhabditis elegans: how good a model for veterinary parasites? Veterinary Parasitology 101, 371–386. DOI: 10.1016/S0304-4017(01)00562-3CrossRefPubMedCentralGoogle Scholar
  17. González J.A., Estevez-Braun A.J. 1998. Effect of (E)-Chalcone on Potato-Cyst Nematodes (Globodera pallida and G. rostochiensis). Journal of Agricultural and Food Chemistry, 46, 1163–1165. DOI: 10.1021/jf9706686CrossRefGoogle Scholar
  18. Grünz G., Haas K., Soukup S., Klingenspor M., Kulling S.E., Daniel H., Spanier B. 2012. Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in Caenorhabditis elegans. Mechanism of Ageing and Development, 133, 1–10. DOI: 10.1016/j.mad.2011.11.005CrossRefGoogle Scholar
  19. Holden-Dye L., Walker R.J. 2007. Anthelmintic drugs, WormBook, ed. The C. elegans Research Community, WormBook. DOI: 10.1895/wormbook.1.143.1Google Scholar
  20. Horton D.A., Bourne G.T., Smythe M.L. 2003. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chemical Reviews, 103, 893–930. DOI: 10.1021/cr020033sCrossRefPubMedCentralGoogle Scholar
  21. Iglesias J., Medina I., Pazos M. 2014. Galloylation and polymerization: role of structure to antioxidant activity of polyphenols in lipid systems. In: (Eds. Watson R.R., Preedy V.R., Zibadi S.). Polyphenols in Human Health and Disease. Elsevier, 323–338. DOI: 10.1016/B978-0-12-398456-2.00025-6CrossRefGoogle Scholar
  22. Jospin M., Jacquemond V., Mariol M.C., Segalat L., Allard B. 2002. The L-type voltage-dependent Ca2+ channel EGL-19 controls body wall muscle function in Caenorhabditis elegans. The Journal of Cell Biology, 159, 337–348. DOI: 10.1083/jcb.200203055CrossRefPubMedCentralGoogle Scholar
  23. Kampkötter A., Gombitang Nkwonkam C., Zurawski R.F., Timpel C., Chovolou Y., Wätjen W., Kahl R. 2007. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Archives of Toxicology, 81, 849–858. DOI: 10.1007/s00204-007-0215-4CrossRefPubMedCentralGoogle Scholar
  24. Katiki L.M., Ferreira J.F.S., Zajac A.M., Masler C., Lindsay D.S., Chagas A.C.S., Amarante A.F.T. 2011. Caenorhabditis elegans as a model to screen plant extracts and compounds as natural anthelmintics for veterinary use. Veterinary Parasitology, 182, 264–268. DOI: 10.1016/j.vetpar.2011.05.020CrossRefPubMedCentralGoogle Scholar
  25. Kelly E.H., Anthony R.T., Dennis J.B. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry, 13, 572–584. DOI: 10.1016/S0955-2863(02)00208-5CrossRefGoogle Scholar
  26. Klekota J., Roth F.P. 2008. Chemical substructures that enrich for biological activity. Bioinformatics, 24, 2518–2525. DOI: 10.1093/bioinformatics/btn479CrossRefPubMedCentralGoogle Scholar
  27. Kwok T.C.Y., Ricker N., Fraser R., Burns A., Stanley E.F., McCourt P., Cutler S.R., Roy P.J. 2006. A small-molecule screen in Caenorhabditis elegans yields a new calcium channel antagonist. Nature, 441, 91–95. DOI: 10.1038/nature04657CrossRefPubMedCentralGoogle Scholar
  28. Laliberté R., Campbell D., Brauderlein F. 1967. Anthelmintic activities of chalcones and related compounds. Canadian Journal of Pharmaceutical Sciences, 2, 37–43Google Scholar
  29. Lamoral-Theys D., Pottier L., Dufrasne F., Neve J., Dubois J., Kornienko A., Kiss R., Ingrassia L. 2010. Natural polyphenols that display anticancer properties through inhibition of kinase activity. Current Medicinal Chemistry, 17, 812–25. DOI: 10.2174/092986710790712183CrossRefPubMedCentralGoogle Scholar
  30. Lee Y.U., Kawasaki I., Lim Y., Oh W.S., Paik Y.K., Shim Y.H. 2008. Inhibition of developmental processes by flavone in Caenorhabditis elegans and its application to the pinewood nematode, Bursaphelenchus xylophilus. Molecular Cells, 26, 171–174. DOI: 10.1007/s11418-007-0220-1Google Scholar
  31. Lindblom T.H., Dodd A.K. 2006. Xenobiotic detoxification in the nematode Caenorhabditis elegans. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 305, 720–730. DOI: 10.1002/jez.a.324CrossRefGoogle Scholar
  32. Liu M., Wilairat P., Croft S.L., Tan A.L.C., Go M.L. 2003. Structure- activity relationships of antileishmanial and antimalarial chalcones. Bioorganic and Medicinal Chemistry, 11, 2729–2738. DOI: 10.1016/j.ejmech.2009.09.012CrossRefPubMedCentralGoogle Scholar
  33. Loa J., Chow P., Zhang K. 2009. Studies of structure-activity relationship on plant polyphenol-induced suppression of human liver cancer cells. Cancer Chemotherapy and Pharmacology, 63, 1007–1016. DOI: 10.1007/s00280-008-0802-yCrossRefPubMedCentralGoogle Scholar
  34. Menaa F., Menaa A., Treton J. 2014. Polyphenols against Skin Aging. In: (Eds. Watson R.R., Preedy V.R. and Zibadi S.). Polyphenols in Human Health and Disease. Elsevier, 819–830. DOI: 10.1016/B978-0-12-398456-2.00063-3CrossRefGoogle Scholar
  35. Morán Vieyra F., Zampini I., Ordoñez R., Isla M.I., Boggetti H., De Rosso V., Mercadante A., Alvarez R., Borsarelli C. 2009. Singlet oxygen quenching and radical scavenging capacities of structurally related flavonoids present in Zuccagnia punctata Cav. Free Radical Research, 43, 553–564. DOI: 10.1080/10715760902912264CrossRefGoogle Scholar
  36. Morris M., Zhang S. 2006. Flavonoid-drug interactions. Effects of flavonoids on ABC transporters. Life Science, 78, 2116–2130. DOI: 10.1016/j.lfs.2005.12.003CrossRefGoogle Scholar
  37. Ndjonkaa D., Abladama E.D., Djafsiaa B., Ajonina-Ekotia I., Achukwia M.D., Liebaua E. 2013. Anthelmintic activity of phenolic acids from the axlewood tree Anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans. Journal of Helminthology, 1–8. DOI: 10.1017/S0022149X1300045XGoogle Scholar
  38. Nijveldt R.J., van Nood E., van Hoorn D.E., Boelens P.G., van Norren K. and van Leeuwen P.A. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition, 74, 418–25CrossRefPubMedCentralGoogle Scholar
  39. Nowakowska Z. 2007. A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, 42, 125–137. DOI: 10.1016/j.ejmech.2006.09.019CrossRefPubMedCentralGoogle Scholar
  40. Pederiva R., Giordano O. 1984. 3,7-Dihydroxy-8-methoxyflavone from Zuccagnia punctata. Phytochemistry, 23, 1340–1341. DOI: 10.1016/S0031-9422(00)80459-8CrossRefGoogle Scholar
  41. Ratera E.L., Ratera M.O. (Ed.) 1980. Plantas de la Flora Argentina Empleadas en Medicina Popular. Hemisferio Sur, Press. Buenos Aires, Argentina, 98–189 pp.Google Scholar
  42. Rice-Evans C.A., Miller N.J., Paganga G. 1996. Structure/antioxidant activity relationshis of flavonoids and phenolic compounds. Free Radical Biology and Medine, 20, 933–956. DOI:10.1016/0891-5849(95)02227-9CrossRefGoogle Scholar
  43. Ross J.A., Kasum C.M. 2002. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22, 19–34. DOI: 10.1146/annurev.nutr.22.111401.144957CrossRefPubMedCentralGoogle Scholar
  44. Shenvi S., Kumar K., Hatti K.S., Rijesh K., Diwakar L., Reddy G. 2013. Synthesis, anticancer and antioxidant activities of 2,4,5-trimethoxy chalcones and analogues from asaronaldehyde: Structure-activity relationship. European Journal of Medicinal Chemistry, 62, 435–442. DOI: 10.1016/j.ejmech.2013.01.018CrossRefPubMedCentralGoogle Scholar
  45. Skantar A.M., Agama K., Meyer S.L.F., Carta L.K., Vinyard B.T. 2005. Effects of geldanamycin on hatching and juvenile motility in Caenorhabditis elegans and Heterodera glycines. Journal of Chemical Ecology, 31, 2481–2491. DOI: 10.1007/s10886-005-7114-zCrossRefPubMedCentralGoogle Scholar
  46. Strayer A., Wu Z., Christen Y., Link C.D., Luo Y. 2003. Expression of the small heat-shock protein Hsp-16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. The FASEB Journal, 17(15), 2305–2307. DOI: 10.1096/fj.03-0376fjeCrossRefPubMedCentralGoogle Scholar
  47. Svetaz L., Tapia A., López S., Furlán R., Petenatti E., Pioli R., Schmeda-Hirschmann G., Zacchino S. 2004. Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi. Journal of Agricultural and Food Chemistry, 52, 3297–3300. DOI: 10.1021/jf035213xCrossRefPubMedCentralGoogle Scholar
  48. Thompson D.P., Klein R.D., Geary T.G. 1996. Prospects for rational approaches to anthelmintic discovery. Parasitology, 113 (Suppl), S217–S238. DOI: 10.1017/S0031182000077994CrossRefPubMedCentralGoogle Scholar
  49. Toursarkissian M. (Ed.) 1980. Plantas Medicinales de la Argentina. Sus nombres botanicos, vulgares, usos y distribución geograficá. Hemisferio Sur SA, Buenos Aires, ArgentinaGoogle Scholar
  50. Williams C.A., Grayer R.J. 2004. Anthocyanins and other flavonoids. Natural Product Reports, 21, 539–573. DOI: 10.1039/b311404jCrossRefPubMedCentralGoogle Scholar
  51. Wilson M.A., Shukitt-Hale B., Kalt W., Ingram D.K., Joseph J.A., Wolkow C.A. 2006. Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5, 59–68. DOI: 10.1111/j.1474-9726.2006.00192.xCrossRefPubMedCentralGoogle Scholar
  52. Wink M., Abbas S. 2013. Epigallocatechin Gallate (EGCG) from green tea (Camellia sinensis) and other natural products mediate stress resistance and slow down aging processes in Caenorhabditis elegans. In: (Ed. Preedy, V.R.). Tea in Health and Disease Prevention. Elsevier, 1105–1115. DOI: 10.1016/B978-0-12-384937-3.00093-8CrossRefGoogle Scholar
  53. Young-Ah Y., Hojung K., Yoongho L., Yhong-Hee S. 2006. Relationships between the larval growth inhibition of Caenorhabditis elegans by apigenin derivatives and their structures. Archives of Pharmacal Research 29, 582–586. DOI: 10.1007/BF02969269CrossRefGoogle Scholar
  54. Zampini I.C., Vattuone M., Isla M.I. 2005. Antibacterial activity against antibiotic-resistant Gram negative human pathogenic bacteria of hydroxychalcone isolated from Zuccagnia punctata Cav. Journal of Ethnopharmacology, 102, 450–456. DOI: 10.1016/j.jep.2005.07.005CrossRefPubMedCentralGoogle Scholar
  55. Zampini I.C., Villarini M., Moretti M., Dominici L., Isla M.I. 2008. Evaluation of genotoxic and antigenotoxic effects of hydroalcoholic extracts of Zuccagnia punctata. Cav. Journal of Ethnopharmacology 115, 330–335. DOI: 10.1016/j.jep.2007.10.007CrossRefPubMedCentralGoogle Scholar
  56. Zampini I.C., Villena J., Salva S., Herrera M., Isla M.I., Alvarez S. 2012. Potentiality of standardized extract and isolated flavonoids from Zuccagnia punctata for the treatment of respiratory infections by Streptococcus pneumoniae: In vitro and in vivo studies. Journal of Ethnopharmacology 140, 287–292. DOI: 10.1016/j.jep.2012.01.019CrossRefPubMedCentralGoogle Scholar

Copyright information

© W. Stefański Institute of Parasitology, PAS 2015

Authors and Affiliations

  • Romina E. D’Almeida
    • 1
  • María R. Alberto
    • 1
    • 2
    • 3
    Email author
  • Phillip Morgan
    • 4
  • Margaret Sedensky
    • 4
  • María I. Isla
    • 1
    • 2
    • 3
  1. 1.INQUINOA (CONICET) San Lorenzo 1469San Miguel de TucumánArgentina
  2. 2.Facultad de Ciencias Naturales e Instituto Miguel Lillo Universidad Nacional de TucumánSan Miguel de TucumánArgentina
  3. 3.Cátedra de Fitoquímica. Facultad de BioquímicaSan Miguel de TucumánArgentina
  4. 4.Department of AnesthesiologyUniversity of Washington and Children’s Research InstituteSeattleUSA

Personalised recommendations