Skip to main content

Steroid hormones interrelationships in the metabolic syndrome: An introduction to the ponderostat hypothesis

References

  1. 1

    Vague J, 1956 The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am J Clin Nutr 4: 20–34.

    PubMed  Article  CAS  Google Scholar 

  2. 2

    Hattori K, Numata N, Ikoma M, Matsuzaka A, Danielson RR, 1991 Sex differences in the distribution of subcutaneous and internal fat. Hum Biol 63: 53–63.

    PubMed  CAS  Google Scholar 

  3. 3

    Starcke S, Vollmer G, 2006 Is there an estrogenic component in the metabolic syndrome. Genes Nutr 1: 177–188.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  4. 4

    Yanase T, Fan WQ, Kyoya K, Min L, Takayanagi R, Kato S, Nawata H, 2008 Androgens and metabolic syndrome: Lessons from androgen receptor knock out (ARKO) mice. J Steroid Biochem Mol Biol 109: 254–257.

    PubMed  Article  CAS  Google Scholar 

  5. 5

    Cheal KL, Abbasi F, Lamendola C, McLaughlin T, Reaven GM, Ford ES, 2004 Relationship to insulin resistance of the Adult Treatment Panel III diagnostic criteria for identification of the metabolic syndrome. Diabetes 53: 1195–1200.

    PubMed  Article  CAS  Google Scholar 

  6. 6

    Reaven G, 2004 The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinol Metabol Clin North Am 33: 283–303.

    Article  Google Scholar 

  7. 7

    Maury E, Brichard SM, 2010 Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314: 1–16.

    PubMed  Article  CAS  Google Scholar 

  8. 8

    Vidal H, 2003 Obésité et inflammation: les adipocytokines. Ann Endocrinol 64: S40–S44.

    CAS  Google Scholar 

  9. 9

    O’Rourke RW, 2009 Molecular mechanisms of obesity and diabetes: At the intersection of weight tregulation, inflammation, and glucose homeostasis. World J Surg 33: 2007–2013.

    PubMed  Article  Google Scholar 

  10. 10

    Miranda PJ, DeFronzo RA, Califf RM, Guyton JR, 2005 Metabolic syndrome: Definition, pathophysiology, and mechanisms. Am Heart J 149: 33–45.

    PubMed  Article  CAS  Google Scholar 

  11. 11

    Potenza MV, Mechanick JI, 2009 The metabolic syndrome: Definition, global impact, and pathophysiology. Nutr Clin Pract 24: 560–577.

    PubMed  Article  Google Scholar 

  12. 12

    Kaplan NM, 1989 The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia and hypertension. Arch Intern Med 149: 1514–1520.

    PubMed  CAS  Google Scholar 

  13. 13

    Bosello O, Zamboni M, 2000 Visceral obesity and metabolic syndrome. Obes Rev 1: 47–56.

    PubMed  Article  CAS  Google Scholar 

  14. 14

    Hayes L, Pearce MS, Firbank MJ, Walker M, Taylor R, Unwin NC, 2010 Do obese but metabolically normal women differ in intra-abdominal fat and physical activity levels from those with the expected metabolic abnormalities? A cross-sectional study. BMC Publ Hlth 10: 723.

    Article  Google Scholar 

  15. 15

    Messier V, Karelis AD, Prud’homme D, Primeau V, Brochu M, Rabasa-Lhoret R, 2010 Identifying metabolically healthy but obese individuals in sedentary postmenopausal women. Obesity 18: 911–917.

    PubMed  Article  Google Scholar 

  16. 16

    Pascot A, Després JP, Lemieux I, et al, 2000 Contribution of visceral obesity to the deterioration of the metabolic risk profile in men with impaired glucose tolerance. Diabetologia 43: 1126–1135.

    PubMed  Article  CAS  Google Scholar 

  17. 17

    Stefan N, Kantartzis K, Machann J, et al, 2008 Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 168: 1609–1616.

    PubMed  Article  Google Scholar 

  18. 18

    Esposito K, Nicoletti G, Giugliano D, 2002 Obesity, cytokines and endothelial dysfunction: A link for the raised cardiovascular risk associated with visceral obesity. J Endocrinol Invest 25: 646–649.

    PubMed  Article  CAS  Google Scholar 

  19. 19

    Karelis AD, 2008 Metabolically healthy but obese individuals. Lancet 372: 1281–1283.

    PubMed  Article  Google Scholar 

  20. 20

    Marques-Vidal P, Pécoud A, Hayoz D, et al, 2010 Normal weight obesity: Relationship with lipids, glycaemic status, liver enzymes and inflammation. Nutr Metab Cardiovasc Dis 20: 669–675.

    PubMed  Article  CAS  Google Scholar 

  21. 21

    Romero-Corral A, Somers VK, Sierra-Johnson J, et al, 2010 Normal weight obesity: a risk factor for cardio-metabolic dysregulation and cardiovascular mortality. Eur Heart J 31: 737–746.

    PubMed  Article  Google Scholar 

  22. 22

    Erlingsson S, Herard S, Leinhard OD, et al, 2009 Men develop more intraabdominal obesity and signs of the metabolic syndrome after hyperalimentation than women. Metabolism 58: 995–1001.

    PubMed  Article  CAS  Google Scholar 

  23. 23

    Catalano KJ, Stefanovski D, Bergman RN, 2010 Critical role of the mesenteric depot versus other intra-abdominal adipose depots in the development of insulin resistance in young rats. Diabetes 59: 1416–1423.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. 24

    Chapados N, Collin P, Imbeault P, Corriveau P, Lavoie JM, 2008 Exercise training decreases in vitro stimulated lipolysis in a visceral (mesenteric) but not in the retroperitoneal fat depot of high-fat-fed rats. Br J Nutr 100: 518–525.

    PubMed  Article  CAS  Google Scholar 

  25. 25

    Ebal E, Cavalié H, Michaux O, Lac G, 2008 Visceral fat and total body fat mass correlate differently with hormones in rat. Pathol Biol 56: 283–285.

    PubMed  Article  CAS  Google Scholar 

  26. 26

    Marin P, Björntorp P, 1993 Endocrine metabolic pattern and adipose tissue distribution. Horm Res 39: 81–85.

    PubMed  Google Scholar 

  27. 27

    Gower BA, Muñoz J, Desmond R, Hilario-Hailey T, Jiao XX, 2006 Changes in intra-abdominal fat in early postmenopausal women: Effecs of hormone use. Obesity 14: 1046–1055.

    PubMed  Article  CAS  Google Scholar 

  28. 28

    Bryzgalova G, Lundholm L, Portwood N, et al, 2008 Mechanisms of antidiabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice. Am J Physiol 295: E904–E912.

    CAS  Google Scholar 

  29. 29

    Pelleymounter MA, Baker MB, McCaleb M, 1999 Does estradiol mediate leptin’s effects on adiposity and body weight? Am J Physiol 276: E955–E963.

    PubMed  Article  CAS  Google Scholar 

  30. 30

    Björntorp P, 1987 Classification of obese patients and complications related to the distribution of surplus fat. Am J Clin Nutr 45: 1120–1125.

    PubMed  Article  Google Scholar 

  31. 31

    Vague J, 1947 La différenciation sexuelle facteur déterminant des formes de l’obésité. Presse Med 55: 339–340.

    PubMed  CAS  Google Scholar 

  32. 32

    Trémollieres FA, Pouilles JM, Ribot CA, 1996 Relative influence of age and menopause on total and regional body composition changes in postmenopausal women. Am J Obstet Gynecol 175: 1594–1600.

    PubMed  Article  Google Scholar 

  33. 33

    Casson PR, Elkind-Hirsch KE, Buster JE, Homsby PJ, Carson SA, Snabes MC, 1997 Effect of postmenopausal estrogen replacement on circulating androgens. Obstet Gynecol 90: 995–998.

    PubMed  Article  CAS  Google Scholar 

  34. 34

    Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C, 2004 Androgens and bone. Endocr Rev 25: 389–425.

    PubMed  Article  CAS  Google Scholar 

  35. 35

    Tracz MJ, Sideras K, Bolona ER, et al, Clinical review: Testosterone use in men and its effects on bone health. A systematic review and meta-analysis of randomized placebo-controlled trials. J Clin Endocrinol Metab 91: 2011–2016.

  36. 36

    Valsamakis G, Chetty R, Anwar A, Banerjee AK, Barnett A, Kumar S, 2004 Association of simple anthropometric measures of obesity with visceral fat and the metabolic syndrome in male Caucasian and Indo-Asian subjects. Diabet Med 21: 1339–1345.

    PubMed  Article  CAS  Google Scholar 

  37. 37

    Rebuffé-Scrive M, Marin P, Björntorp P, 1991 Effect of testosterone on abdominal adipose tissue in men. Int J Obesity 15: 791–795.

    Google Scholar 

  38. 38

    Blouin K, Richard C, Bélanger C, et al, 2003 Local androgen inactivation in abdominal visceral adipose tissue. J Clin Endocrinol Metab 88: 5944–5950.

    PubMed  Article  CAS  Google Scholar 

  39. 39

    Blouin K, Richard C, Brochu G, et al, 2006 Androgen inactivation and steroid-converting enzyme expression in abdominal adipose tissue in men. J Endocrinol 191: 637–649.

    PubMed  Article  CAS  Google Scholar 

  40. 40

    Kapoor D, Goodwin E, Channer KS, Jones TH, 2006 Testosterone replacement therapy improves insulin resistance, glycaemic control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol 154: 899–906.

    PubMed  Article  CAS  Google Scholar 

  41. 41

    Gould DC, Amoroso P, Kirby RS, 2006 Hypoandrogen-metabolic syndrome: A significant issue for men’s health. BJU Int 98: 494–496.

    PubMed  Article  Google Scholar 

  42. 42

    Hamilton EJ, Gianatti E, Strauss BJ, et al, 2011 Increase in visceral and subcutaneous abdominal fat in men with prostate cancer treated with androgen deprivation therapy. Clin Endocrinol 74: 377–383.

    Article  CAS  Google Scholar 

  43. 43

    Akishita M, Fukai S, Hashimoto M, et al, 2010 Association of low testosterone with metabolic syndrome and its components in middle-aged Japanese men. Hypertens Res 33: 587–591.

    PubMed  Article  CAS  Google Scholar 

  44. 44

    Tchernof A, Labrie F, 2004 Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies. Eur J Endocrinol 151: 1–14.

    PubMed  Article  CAS  Google Scholar 

  45. 45

    Giagulli VA, Kaufman JM, Vermeulen A, 1994 Pathogenesis of the Decreased Androgen Levels in Obese Men. J Clin Endocrinol Metab 79: 997–1000.

    PubMed  CAS  Google Scholar 

  46. 46

    Lima N, Cavaliere H, Knobel M, Halpern A, Medeiros-Neto G, 2000 Decreased androgen levels in massively obese men may be associated with impaired fuction of the gonadostat. Int J Obesity 24: 1433–1437.

    Article  CAS  Google Scholar 

  47. 47

    Kupelian V, Page ST, Araujo AB, Travison TG, Bremner WJ, McKinlay JB, 2006 Low sex hormone-binding globulin, total testosterone, and symptomatic andro-gen deficiency are associated with development of the metabolic syndrome in nonobese men. J Clin Endocrinol Metab 91: 843–850.

    PubMed  Article  CAS  Google Scholar 

  48. 48

    Li CY, Giles WH, Ford ES, Liu SM, Li BY, 2010 Association of testosterone and sex hormone-binding globulin with metabolic syndrome and insulin resistance in men. Diabet Care 33: 1618–1624.

    Article  CAS  Google Scholar 

  49. 49

    Matsumoto AM, Bremner WJ, 2004 Serum testosterone assays. Accuracy matters. J Clin Endocrinol Metab 89: 520–524.

    PubMed  Article  CAS  Google Scholar 

  50. 50

    Lea OA, Støa KF, 1972 The binding of testosterone to different serum proteins: A comparative study. Journal of Steroid Biochemistry 3: 409–419.

    PubMed  Article  CAS  Google Scholar 

  51. 51

    Blouin K, Després JP, Couillard C, et al, 2005 Contribution of age and declining androgen levels to features of the metabolic syndrome in men. Metabolism 54: 1034–1040.

    PubMed  Article  CAS  Google Scholar 

  52. 52

    Cleland WH, Simpson ER, Mendelson CR, 1985 Effects of aging and obesity on aromatase activity of human adipose cells. J Clin Endocrinol Metab 60: 174–177.

    PubMed  Article  CAS  Google Scholar 

  53. 53

    Brind J, Strain G, Miller L, Zumoff B, Vogelman J, Orentreich N, 1990 Obese men have elevated plasma levels of estrone sulfate. Int J Obesity 14: 483–486.

    CAS  Google Scholar 

  54. 54

    Cohen PG, 1999 The hypogonadal-obesity cycle: role of aromatase in modulating the testosterone-estradiol shunt - a major factor in the genesis of morbid obesity. Med Hypoth 52: 49–51.

    Article  CAS  Google Scholar 

  55. 55

    Zumoff B, Miller LK, Strain GW, 2003 Reversal of the hypogonadotropic hypogonadism of obese men by administration of the aromatase inhibitor testolactone. Metabolism 52: 1126–1128.

    PubMed  Article  CAS  Google Scholar 

  56. 56

    Schaller GB, 1964 The year of the gorilla, Chicago: University of Chicago Press.

    Google Scholar 

  57. 57

    Gesta S, Bluher M, Yamamoto Y, et al, 2006 Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proc Nat Acad Sci USA 103: 6676–6681.

    PubMed  Article  CAS  Google Scholar 

  58. 58

    Shen W, Punyanitya M, Silva AM, et al, 2009 Sexual dimorphism of adipose tissue distribution across the lifespan: a cross-sectional whole-body magnetic resonance imaging study. Nutr Metab 6: 17.

    Article  Google Scholar 

  59. 59

    Cowell CT, Briody J, Lloyd-Jones S, Smith C, Moore B, Howman-Giles R, 1997 Fat distribution in children and adolescents - the influence of sex and hormones. Horm Res 48: 93–100.

    PubMed  Article  CAS  Google Scholar 

  60. 60

    Labayen I, Moreno LA, Blay MG, et al, 2006 Early programming of body composition and fat distribution in adolescents. J Nutr 136: 147–152.

    PubMed  Article  CAS  Google Scholar 

  61. 61

    Perfetto F, Tarquini R, Cornélissen G, et al, 2004 Circadian phase difference of leptin in android versus gynoid obesity. Peptides 25: 1297–1306.

    PubMed  Article  CAS  Google Scholar 

  62. 62

    Ahima RS, Dushay J, Flier SN, Prabakaran D, Flier JS, 1997 Leptin accelerates the onset of puberty in normal female mice. J Clin Invest 99: 391–395.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. 63

    Ring LE, Zeltser LM, 2010 Disruption of hypothalamic leptin signaling in mice leads to early-onset obesity, but physiological adaptations in mature animals stabilize adiposity levels. J Clin Invest 120: 2931–2941.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  64. 64

    Goodarzi MO, Azziz R, 2006 Diagnosis, epidemiology, and genetics of the polycystic ovary syndrome. Best Pract Res Clin Endocr Metab 20: 193–205.

    Article  CAS  Google Scholar 

  65. 65

    Gilling-Smith C, Willis DS, Beard RW, Franks S, 1994 Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab 79: 1158–1165.

    CAS  Google Scholar 

  66. 66

    Ducluzeau PH, Laville M, Vidal H, Pugeat M, 2001 Résistance à l’insuline et syndrome des ovaires poly-kystiques. Diabete Metabol 27: S7–S12.

    CAS  Google Scholar 

  67. 67

    Orio F, Palomba S, Cascella T, et al, 2003 Adiponectin levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab 88: 2619–2623.

    PubMed  Article  CAS  Google Scholar 

  68. 68

    Tarkun I, Arslan BC, Cantürk Z, Türemen E, Sahin T, Duman C, 2004 Endothelial dysfunction in young women with polycystic ovary syndrome: Relationship with insulin resistance and low-grade chronic inflammation. J Clin Endocrinol Metab 89: 5592–5596.

    PubMed  Article  CAS  Google Scholar 

  69. 69

    Meyer C, McGrath BP, Teede HJ, 2005 Overweight women with polycystic ovary syndrome have evidence of subclinical cardiovascular disease. J Clin Endocrinol Metab 90: 5711–5716.

    PubMed  Article  CAS  Google Scholar 

  70. 70

    Pasquali R, Gambineri A, Pagotto U, 2006 The impact of obesity on reproduction in women with polycystic ovary syndrome. Br J Obstet Gynaecol 113: 1148–1159.

    Article  CAS  Google Scholar 

  71. 71

    Attaoua R, El Mkadem SA, Radian S, et al, 2008 FTO gene associated to metabolic syndrome in women with polycystic ovary syndrome. Biochem Biophys Res Commun 373: 230–234.

    PubMed  Article  CAS  Google Scholar 

  72. 72

    Vignesh JP, Mohan V, 2007 Polycystic ovary syndrome: A component of metabolic syndrome? J Postgrad Med 53: 128–134.

    PubMed  Article  CAS  Google Scholar 

  73. 73

    Kumar A, Woods KS, Bartolucci AA, Azziz R, 2005 Prevalence of adrenal androgen excess in patients with the polycystic ovary syndrome (PCOS). Clin Endocrinol 62: 644–649.

    Article  CAS  Google Scholar 

  74. 74

    Gilling-Smith C, Story H, Rogenrs V, Franks S, 1997 Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome. Clin Endocrinol 47: 93–99.

    Article  CAS  Google Scholar 

  75. 75

    Goodarzi MO, Erickson S, Port SC, Jennrich RI, Korenman SG, 2003 Relative impact of insulin resistance and obesity on cardiovascular risk factors in polycystic ovary syndrome. Metabolism 52: 713–719.

    PubMed  Article  CAS  Google Scholar 

  76. 76

    Moll E, van der Veen F, van Wely M, 2007 The role of metformin in polycystic ovary syndrome: a systematic review. Hum Reprod Up 13: 527–537.

    Article  CAS  Google Scholar 

  77. 77

    Essah PA, Wickham EP, Nestler JE, 2007 The metabolic syndrome in polycystic ovary syndrome. Clin Obstet Gynecol 50: 205–225.

    PubMed  Article  Google Scholar 

  78. 78

    Lankarani M, Valizadeh N, Heshmat R, Peimani M, Sohrabvand F, 2009 Evaluation of insulin resistance and metabolic syndrome in patients with polycystic ovary syndrome. Gynecol Endocrinol 25: 504–507.

    PubMed  Article  CAS  Google Scholar 

  79. 79

    Bhattacharya SM, 2010 Prevalence of metabolic syndrome in women with polycystic ovary syndrome, using two proposed definitions. Gynecol Endocrinol 26: 516–520.

    PubMed  Article  Google Scholar 

  80. 80

    Gould DC, Kirby RS, Amoroso P, 2007 Hypoandrogen-metabolic syndrome: a potentially common and underdiagnosed condition in men. Int J Clin Pract 61: 341–344.

    PubMed  Article  CAS  Google Scholar 

  81. 81

    Kaplan SA, Meehan AG, Shah A, 2006 The age related decrease in testosterone is significantly exacerbated in obese men with the metabolic syndrome. What are the implications for the relatively high incidence of erectile dysfunction observed in these men? J Urol 176: 1524–1527.

    PubMed  CAS  Google Scholar 

  82. 82

    Corona G, Monami M, Rastrelli G, Aversa A, Tishova Y, Saad F, Lenzi A, Forti G, Mannucci E, Maggi M, 2011 Testosterone and metabolic syndrome: A metaanalysis study. J Sex Med 8: 272–283.

    PubMed  Article  CAS  Google Scholar 

  83. 83

    Howard JM, 2007 Common factor of cancer and the metabolic syndrome may be low DHEA. Ann Epidemiol 17: 270.

    PubMed  Article  Google Scholar 

  84. 84

    Charlton M, Angulo P, Chalasani N, et al, 2008 Low circulating levels of dehydroepiandrosterone in histologically advanced nonalcoholic fatty liver disease. Hepatol 47: 484–492.

    Article  CAS  Google Scholar 

  85. 85

    Korhonen S, Hippeläinen M, Vanhala M, Heinonen S, Niskanen L, 2003 The androgenic sex hormone profile is an essential feature of metabolic syndrome in premenopausal women: a controlled community-based study. Fertil Steril 79: 1327–1334.

    PubMed  Article  Google Scholar 

  86. 86

    Rodriguez A, Muller DC, Metter EJ, et al, 2007 Aging, androgens, and the metabolic syndrome in a longitudinal study of aging. J Clin Endocrinol Metab 92: 3568–3572.

    PubMed  Article  CAS  Google Scholar 

  87. 87

    Corbould A, 2008 Effects of androgens on insulin action in women: is androgen excess a component of female metabolic syndrome? Diab Metab Res Rev 24: 520–532.

    Article  CAS  Google Scholar 

  88. 88

    Alexandre C, 2005 Androgens and bone metabolism. Joint Bone Spine 72: 202–206.

    PubMed  Article  Google Scholar 

  89. 89

    Mauras N, 2006 Growth hormone and testosterone: Effects on whole body metabolism and skeletal muscle in adolescence. Horm Res 66: 42–48.

    CAS  Google Scholar 

  90. 90

    Ophoff J, van Proeyen K, Callewaert F, et al, 2009 Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. Endocrinology 150: 3558–3566.

    PubMed  Article  CAS  Google Scholar 

  91. 91

    Ruzzin J, Wagman AS, Jensen J, 2005 Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor. Diabetologia 48: 2119–2130.

    PubMed  Article  CAS  Google Scholar 

  92. 92

    Natsui K, Tanaka K, Suda M, et al, 2006 High-dose glucocorticoid treatment induces rapid loss of trabecular bone mineral density and lean body mass. Osteoporosis Int 17: 105–108.

    Article  CAS  Google Scholar 

  93. 93

    Schakman O, Gilson H, Kalista S, Thissen JP, 2009 Mechanisms of muscle atrophy induced by glucocorticoids. Horm Res 72: 36–41.

    PubMed  Article  CAS  Google Scholar 

  94. 94

    Shamlian T, Cole MG, 2006 Androgen treatment of depressive symptoms in older men: A systematic review of feasibility and effectiveness. Can J Psychiat 51: 295–299.

    Article  Google Scholar 

  95. 95

    Zarrouf FA, Artz S, Griffith J, Sirbu C, Kommor M, 2009 Testosterone and depression: Systematic review and meta-analysis. J Psychiatr Pract 15: 289–305.

    PubMed  Article  Google Scholar 

  96. 96

    Giltay EJ, Tishova YA, Mskhalaya GJ, Gooren LJG, Saad F, Kalinchenko SY, 2010 Effects of testosterone supplementation on depressive symptoms and sexual dysfunction in hypogonadal men with the metabolic syndrome. J Sex Med 7: 2572–2582.

    PubMed  Article  CAS  Google Scholar 

  97. 97

    Kalynchuk LE, Gregus A, Boudreau D, Perrot-Sinal TS, 2004 Corticosterone increases depression-like behavior, with some effects on predator odor-induced defensive behavior, in male and female rats. Behav Neurosci 118: 1365–1377.

    PubMed  Article  CAS  Google Scholar 

  98. 98

    Burke HM, Davis MC, Otte C, Mohr DC, 2005 Depression and cortisol responses to psychological stress: A meta-analysis. Psychoneuroendocrinology 30: 846–856.

    PubMed  Article  CAS  Google Scholar 

  99. 99

    Zhao Y, Ma R, Shen J, Su H, Xing DM, Du LJ, 2008 A mouse model of depression induced by repeated corticosterone injections. Eur J Pharmacol 581: 113–120.

    PubMed  Article  CAS  Google Scholar 

  100. 100

    Killinger DW, Strutt BJ, Roncari DA, Khalil MW, 1995 Estrone formation from dehydroepiandrosterone in cultured human breast adipose stromal cells. J Steroid Biochem Mol Biol 52: 195–201.

    PubMed  Article  CAS  Google Scholar 

  101. 101

    Schwarz HP, 1990 Conversion of dehydroepiandroster-ones sulfate (DHEA-S) to estrogens and testosterone in young nonpregnant women. Horm Metabol Res 22: 309–310.

    Article  CAS  Google Scholar 

  102. 102

    Favre J, Gao J, Henry JP, et al, 2010 Endothelial estrogen receptor a plays an essential role in the coronary and myocardial protective effects of estradiol in ischemia/ reperfusion. Arterioscler Thromb Vasc Biol 30: 2562–2567.

    PubMed  Article  CAS  Google Scholar 

  103. 103

    Xu Y, Armstrong SJ, Arenas IA, Pehowich DJ, Davidge ST, 2004 Cardioprotection by chronic estrogen or superoxide dismutase mimetic treatment in the aged female rat. Am J Physiol 287: H165–H171.

    CAS  Google Scholar 

  104. 104

    Riant E, Waget A, Cogo H, Arnal JF, Burcelin R, Gourdy P, 2009 Estrogens protect against high-fat diet-induced insulin resistance and glucose intolerance in mice. Endocrinology 150: 2109–2117.

    PubMed  Article  CAS  Google Scholar 

  105. 105

    Windler EE, Kovanen PT, Chao YS, Brown MS, Havel RJ, Goldstein JL, 1980 The estradiol-stimulated lipoprotein receptor of rat liver. A binding site that membrane mediates the uptake of rat lipoproteins containing apoproteins B and E. J Biol Chem 255: 10464–10471.

    CAS  Google Scholar 

  106. 106

    Hay RV, Pottenger LA, Reingold AL, Getz GS, Wissler RW, 1971 Degradation of I125-labelled serum low density lipoprotein in normal and estrogen-treated male rats. Biochem Biophys Res Commun 44: 1471–1477.

    PubMed  Article  CAS  Google Scholar 

  107. 107

    Simpkins JW, Dykens JA, 2008 Mitochondrial mechanisms of estrogen neuroprotection. Brain Res Rev 57: 421–430.

    PubMed  Article  CAS  Google Scholar 

  108. 108

    Lebesgue D, Chevaleyre V, Zukin RS, Etgen AM, 2009 Estradiol rescues neurons from global ischemia-induced cell death: Multiple cellular pathways of neuroprotection. Steroids 74: 555–561.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109

    Guo XM, Lu X, Ren HM, Levin ER, Kassab GS, 2006 Estrogen modulates the mechanical homeostasis of mouse arterial vessels through nitric oxide. Am J Physiol 290: H1788–H1797.

    CAS  Google Scholar 

  110. 110

    Stirone C, Duckles SP, Krause DN, Procaccio V, 2005 Estrogen increases mitochondrial efficiency and reduces oxidative stress in cerebral blood vessels. Mol Pharmacol 68: 959–965.

    PubMed  Article  CAS  Google Scholar 

  111. 111

    Villa P, Sagnella F, Perri C, et al, 2008 Low- and standard-estrogen dosage in oral therapy: dose-dependent effects on insulin and lipid metabolism in healthy postmenopausal women. Climacteric 11: 498–508.

    PubMed  Article  CAS  Google Scholar 

  112. 112

    Yoon M, 2009 The role of PPARa in lipid metabolism and obesity: Focusing on the effects of estrogen on PPARa actions. Pharmacol Res 60: 151–159.

    PubMed  Article  CAS  Google Scholar 

  113. 113

    Al-Azzawi F, Palacios S, 2009 Hormonal changes during menopause. Maturitas 63: 135–137.

    PubMed  Article  CAS  Google Scholar 

  114. 114

    Sarrel PM, 2002 Androgen deficiency: menopause and estrogen-related factors. Fertil Steril 77: 63–67.

    Article  Google Scholar 

  115. 115

    Bachmann GA, 2002 The hypoandrogenic woman: pathophysiologic overview. Fertil Steril 77: 72–76.

    Article  Google Scholar 

  116. 116

    Tang V, Torregrosa C, Remesar X, Alemany M, 2001 Dietary oleoyl-estrone affects the growth rate of young rats. Eur J Nutr 40: 17–22.

    PubMed  Article  CAS  Google Scholar 

  117. 117

    van den Belt K, Berckmans P, Vangenechten C, Verheyen R, Witters H, 2004 Comparative study on the in vitro in vivo estrogenic potencies of 17 beta-estradiol, estrone, 17 alpha- ethynylestradiol and nonylphenol. Aquat Toxicol 66: 183–195.

    PubMed  Article  CAS  Google Scholar 

  118. 118

    Schlindler AE, Ebert A, Friedrich E, 1972 Conversion of androstenedione to estrone by human fat tissue. J Clin Endocrinol Metab 35: 627–630.

    Article  Google Scholar 

  119. 119

    Remesar X, Fernández-López JA, Savall P, et al, 2002 Effect of oral oleoyl-estrone on adipose tissue composition in male rats. Int J Obesity 26: 1092–1102.

    Article  CAS  Google Scholar 

  120. 120

    Esteve M, Virgili J, Aguilar H, et al, 1999 Leptin enhances the synthesis of oleoyl-estrone from estrone in white adipose tissue. Eur J Nutr 38: 99–104.

    PubMed  Article  CAS  Google Scholar 

  121. 121

    Vilà R, Cabot C, Villarreal L, Monegal A, et al, 2011 Oleoyl-estrone is a precursor of an estrone-derived ponderostat signal. J Steroid Biochem Mol Biol 124: 99–111.

    PubMed  Article  CAS  Google Scholar 

  122. 122

    Levin BE, Patterson CM, 2005 Exercising the obese brain: Resetting the defended body weight. Endocrinology 146: 1674–1675.

    PubMed  Article  CAS  Google Scholar 

  123. 123

    Grasa MD, Cabot C, Esteve M, et al, 2001 Daily oral oleoyl-estrone gavage induces a dose-dependent loss of fat in Wistar rats. Obes Res 9: 202–209.

    Article  CAS  Google Scholar 

  124. 124

    Buscemi S, Caimi G, Verga S, 1996 Resting metabolic rate and postabsorptive substrate oxidation in morbidly obese subjects before and after massive weight loss. Int J Obesity 20: 41–46.

    CAS  Google Scholar 

  125. 125

    Cottam DR, Mattar SG, Barinas-Mitchell E, et al, 2004 The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: Implications and effects of weight loss. Obes Surg 14: 589–600.

    PubMed  Article  Google Scholar 

  126. 126

    Solá E, Jover A, López-Ruiz A, et al, 2009 Parameters of inflammation in morbid obesity: lack of effect of moderate weight loss. Obes Surg 19: 571–576.

    PubMed  Article  Google Scholar 

  127. 127

    Levin BE, Dunn-Meynell AA, 2002 Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity. Am J Physiol 282: R46–R54.

    CAS  Google Scholar 

  128. 128

    Weigensberg MJ, Toledo-Corral CM, Goran MI, 2008 Association between the metabolic syndrome and serum cortisol in overweight Latino youth. J Clin Endocrinol Metab 93: 1372–1378.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. 129

    Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP, 2009 The pathogenetic role of cortisol in the metabolic syndrome: A hypothesis. J Clin Endocrinol Metab 94: 2692–2701.

    PubMed  Article  CAS  Google Scholar 

  130. 130

    Vogelzangs N, Beekman ATF, Dik MG, et al, 2009 Late-life depression, cortisol, and the metabolic syndrome. Am J Geriat Psychiat 17: 716–721.

    Article  Google Scholar 

  131. 131

    van Steensel B, Jenster G, Damm K, Brinkmann AO, van Driel R, 1995 Domains of the human androgen receptor and glucocorticoid receptor involved in binding to the nuclear matrix. J Cell Biochem 57: 465–478.

    PubMed  Article  Google Scholar 

  132. 132

    Pasquali R, Vicennati V, Gambineri A, Pagotto U, 2008 Sex-dependent role of glucocorticoids and androgens in the pathophysiology of human obesity. Int J Obesity 32: 1764–1779.

    Article  CAS  Google Scholar 

  133. 133

    Cheng MY, Sun G, Jin M, Zhao H, Steinberg GK, Sapolsky RM, 2009 Blocking glucocorticoid and enhancing estrogenic genomic signaling protects against cerebral ischemia. J Cereb Blood Flow Metab 29: 130–136.

    PubMed  Article  CAS  Google Scholar 

  134. 134

    Weiser MJ, Handa RJ, 2009 Estrogen impairs glucocorticoid dependent negative feedback on the hypothalamic-pituitary-adrenal axis via estrogen receptor alpha within the hypothalamus. Neuroscince 159: 883–895.

    Article  CAS  Google Scholar 

  135. 135

    Grasa MM, Serrano M, Fernández-López JA, Alemany M, 2007 Corticosterone inhibits the lipid-mobilizing effects of oleoyl-estrone in adrenalectomized rats. Endocrinology 148: 4056–4063.

    Article  CAS  Google Scholar 

  136. 136

    Wolf G, 2002 Glucocorticoids in adipocytes stimulate visceral obesity. Nutr Rev 60: 148–151.

    PubMed  Article  Google Scholar 

  137. 137

    Wang M, 2005 The role of glucocorticoid action in the pathophysiology of the metabolic syndrome. Nutr Metab 2: 3.

    Article  CAS  Google Scholar 

  138. 138

    Macfarlane DP, Forbes S, Walker BR, 2008 Glucocorti-coids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol 197: 189–204.

    PubMed  Article  CAS  Google Scholar 

  139. 139

    Napolitano A, Voice MW, Edwards CRW, Seckl JR, Chapman KE, 1998 11b-hydroxysteroid dehydrogenase 1 in adipocytes: Expression is differentiation-dependent and hormonally regulated. J Steroid Biochem Mol Biol 64: 251–260.

    PubMed  Article  CAS  Google Scholar 

  140. 140

    Tomlinson JW, Stewart PM, 2002 The functional consequences of 11b- hydroxysteroid dehydrogenase expression in adipose tissue. Horm Metabol Res 34: 746–751.

    Article  CAS  Google Scholar 

  141. 141

    Lee MJ, Fried SK, Mundt SS, Wang Y, Sullivan S, Stefanni A, Daugherty BL, Hermanowski-Vosatka A, 2008 Depot-specific regulation of the conversion of cortisone to cortisol in human adipose tissue. Obesity 16: 1178–1185.

    PubMed  Article  CAS  Google Scholar 

  142. 142

    Stimson RH, Andersson J, Andrew R, et al, 2009 Cortisol release from adipose tissue by 11b-Hydroxysteroid Dehydrogenase type 1 in humans. Diabetes 58: 46–53.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. 143

    Müller J, 1995 Aldosterone: The minority hormone of the adrenal cortex. Steroids 60: 2–9.

    PubMed  Article  Google Scholar 

  144. 144

    Hornsby PJ, 1995 Biosynthesis of DHEAS by the human adrenal cortex and its age-related decline. Ann NY Acad Sci 774: 29–46.

    PubMed  Article  CAS  Google Scholar 

  145. 145

    Havelock JC, Auchus RJ, Rainey WE, 2004 The rise in adrenal androgen biosynthesis: Adrenarche. Semin Reprod Med 22: 337–347.

    PubMed  Article  CAS  Google Scholar 

  146. 146

    Reynolds RM, Walker BR, 2003 Human insulin resistance: the role of glucocorticoids. Diabet Obes Metabol 5: 5–12.

    Article  CAS  Google Scholar 

  147. 147

    Asensio C, Muzzin P, Rohner-Jeanrenaud F, 2004 Role of glucocorticoids in the physiopathology of excessive fat deposition and insulin resistance. Int J Obesity 28: S45–S52.

    Article  CAS  Google Scholar 

  148. 148

    Zakrzewska KE, Cusin I, Sainsbury A, Rohner-Jean-renaud F, Jeanrenaud B, 1997 Glucocorticoids as counterregulatory hormones of leptin - Toward an understanding of leptin resistance. Diabetes 46: 717–719.

    PubMed  Article  CAS  Google Scholar 

  149. 149

    Ray DW, 1996 Molecular mechanisms of glucocorticoid resistance. J Endocrinol 149: 1–5.

    PubMed  Article  CAS  Google Scholar 

  150. 150

    Ray PD, Foster DO, Lardy HA, 1964 Mode of action of glucocorticoids. I. Stimulation of gluconeogenesis independent of synthesis de novo of enzymes. J Biol Chem 239: 3396–3400.

    PubMed  CAS  Google Scholar 

  151. 151

    May RC, Bailey JL, Mitch WE, Masud T, England BK, 1996 Glucocorticoids and acidosis stimulate protein and amino acid catabolism in vivo. Kidney Int 49: 679–683.

    PubMed  Article  CAS  Google Scholar 

  152. 152

    Tauchmanovà L, Pivonello R, di Somma C, Rossi R, de Martino MC, Camera L, Klain M, Salvatore M, Lombardi G, Colao A, 2006 Bone demineralization and vertebral fractures in endogenous cortisol excess: Role of disease etiology and gonadal status. J Clin Endocrinol Metab 91: 1779–1784.

    PubMed  Article  CAS  Google Scholar 

  153. 153

    Franchimont D, 2004 Overview of the actions of glucocorticoids on the immune response. A good model to characterize new pathways of immunosuppression for new treatment strategies. Ann NY Acad Sci 1024: 124–137.

    PubMed  CAS  Google Scholar 

  154. 154

    Kirschbaum C, Prüssner JC, Stone AA, et al, 1995 Persistent high cortisol responses to repeated psychological stress in a subpopulation of healthy men. Psychosomat Med 57: 468–474.

    Article  CAS  Google Scholar 

  155. 155

    Duclos M, Gouarne C, Bonnemaison D, 2003 Acute and chronic effects of exercise on tissue sensitivity to glucocorticoids. J Appl Physiol 94: 869–875.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. 156

    Jensen J, Riis BJ, Strøm V, Nilas L, Christiansen C, 1987 Long-term effects of percutaneous estrogens and oral progesterone on serum lipoproteins in postmenopausal women. Am J Obstet Gynecol 156: 66–71.

    PubMed  Article  CAS  Google Scholar 

  157. 157

    Wortsman J, Frank S, Cryer PE, 1984 Adrenomedullary response to maximal stress in humans. Am J Med 77: 779–784.

    PubMed  Article  CAS  Google Scholar 

  158. 158

    Sutter-Dub MT, 2002 Rapid non-genomic and genomic responses to progestogens, estrogens, and glucocorti-coids in the endocrine pancreatic B cell, the adipocyte and other cell types. Steroids 67: 77–93.

    PubMed  Article  CAS  Google Scholar 

  159. 159

    Kochakian CD, 1975 Definition of androgens and protein anabolic steroids. Pharmacol Ther B 1: 149–177.

    PubMed  CAS  Google Scholar 

  160. 160

    Pasquali R, Vicennati V, Cacciari M, Pagotto U, 2006 The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann NY Acad Sci 1083: 111–128.

    PubMed  Article  CAS  Google Scholar 

  161. 161

    Chrousos GP, 2000 The role of stress and the hypo-thalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obesity 24: Suppl 2: 50–55.

    Article  Google Scholar 

  162. 162

    Rosmond R, 2005 Role of stress in the pathogenesis of the metabolic syndrome. Psychoneuroendocrinol 30: 1–10.

    Article  CAS  Google Scholar 

  163. 163

    Hautanen A, Räikkönen K, Adlerkreutz H, 1997 Associations between pituitary-adrenocortical function and abdominal obesity, hyperinsulinaemia and dyslipidaemia in normotensive males. J Intern Med 241: 451–461.

    PubMed  Article  CAS  Google Scholar 

  164. 164

    Livingstone DEW, Jones GC, Smith K, et al, 2000 Understanding the role of glucocorticoids in obesity: Tissue-specific alterations of corticosterone metabolism in obese Zucker rats. Endocrinology 141: 560–563.

    PubMed  Article  CAS  Google Scholar 

  165. 165

    Wang MH, 2006 Tissue-specific glucocorticoid excess in the metabolic syndrome: 11b-HSD1 as a therapeutic target. Drug Develop Res 67: 567–569.

    Article  CAS  Google Scholar 

  166. 166

    Grasa MM, Cabot C, Fernández-López JA, Remesar X, Alemany M, 2001 Modulation of corticosterone availability to white adipose tissue of lean and obese Zucker rats by corticosteroid-binding globulin. Horm Metabol Res 33: 407–411.

    Article  CAS  Google Scholar 

  167. 167

    Barat P, Duclos M, Gatta B, Roger P, Mormede P, Moisan MP, 2005 Corticosteroid binding globulin gene polymorphism influences cortisol driven fat distribution in obese women. Obes Res 13: 1485–1490.

    PubMed  Article  CAS  Google Scholar 

  168. 168

    Bledsoe RK, Montana VG, Stanley TB, et al, 2002 Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110: 93–105.

    PubMed  Article  CAS  Google Scholar 

  169. 169

    Evans RM, 1988 The steroid and thyroid hormone receptor superfamily. Science 240: 889–895.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  170. 170

    Chen SY, Wang J, Yu GQ, Liu WH, Pearce D, 1997 Androgen and glucocorticoid receptor heterodimer formation. A possible mechanism for mutual inhibition of transcriptional activity. J Biol Chem 272: 14087–14092.

    PubMed  CAS  Google Scholar 

  171. 171

    Mitra R, Sapolsky RM, 2010 Expression of chimeric estrogen-glucocorticoid-receptor in the amygdala reduces anxiety. Brain Res 1342: 33–38.

    PubMed  Article  CAS  Google Scholar 

  172. 172

    Mackem S, Baumann CT, Hager GL, 2001 A glucocorticoid/retinoic acid receptor chimera that displays cytoplasmic/nuclear translocation in response to retinoic acid. A real time sensing assay for nuclear receptor ligands. J Biol Chem 276: 45501–45504.

    PubMed  CAS  Google Scholar 

  173. 173

    Genaro G, Franci CR, 2010 Cortisol influence on testicular testosterone secretion in domestic cat: An in vitro study. Pesq Vet Bras 30: 887–890.

    Article  Google Scholar 

  174. 174

    Dong Q, Salva A, Sottas CM, Niu EM, Holmes M, Hardy MR, 2004 Rapid glucocorticoid mediation of suppressed testosterone biosynthesis in male mice subjected to immobilization stress. J Androl 25: 973–981.

    PubMed  Article  CAS  Google Scholar 

  175. 175

    MacAdams MR, White RH, Chipps BE, 1986 Reduction of serum testosterone levels during chronic glucocorticoid therapy. Ann Int Med 104: 648–651.

    PubMed  Article  CAS  Google Scholar 

  176. 176

    Labrie F, Bélanger A, Simard J, Luu-The V, Labrie C, 1995 DHEA and peripheral androgen and estrogen formation: intracrinology. Ann NY Acad Sci 774: 16–28.

    PubMed  Article  CAS  Google Scholar 

  177. 177

    Apostolova G, Schweizer RAS, Balazs Z, Kostadinova RM, Odermatt A, 2005 Dehydroepiandrosterone inhibits the amplification of glucocorticoid action in adipose tissue. Am J Physiol 288: E957–E964.

    Article  CAS  Google Scholar 

  178. 178

    Browne ES, Wright BE, Porter JR, Svec F, 1992 Dehydroepiandrosterone. Antiglucocorticoid action in mice. Am J Med Sci 303: 366–371.

    PubMed  Article  CAS  Google Scholar 

  179. 179

    Gong H, Jarzynka MJ, Cole TJ, et al, 2008 Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Res 68: 7386–7393.

    PubMed  Article  CAS  Google Scholar 

  180. 180

    Weiser MJ, Foradori CD, Handa RJ, 2010 Estrogen receptor beta activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function. Brain Res 1336: 78–88.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  181. 181

    Simoncini T, Maffei S, Basta G, et al, 2000 Estrogens and glucocorticoids inhibit endothelial vascular cell adhesion molecule-1 expression by different transcriptional mechanisms. Circul Res 87: 19–25.

    Article  CAS  Google Scholar 

  182. 182

    da Silva JP, 1999 Sex hormones and glucocorticoids: Interactions with the immune system. Ann NY Acad Sci 876: 102–118.

    PubMed  Article  Google Scholar 

  183. 183

    Sheffield-Moore M, 2000 Androgens and the control of skeletal muscle protein synthesis. Ann Med 32: 181–186.

    PubMed  Article  CAS  Google Scholar 

  184. 184

    Isozaki Y, Mitch WE, England BK, Price SR, 1996 Protein degradation and increased mRNAs encoding proteins of the ubiquitin-proteasome proteolytic pathway in BC3H1 myocytes require an interaction between glucocorticoids and acidification. Proc Nat Acad Sci USA 93: 1967–1971.

    PubMed  Article  CAS  Google Scholar 

  185. 185

    Burt MG, Gibney J, Ho KKY, 2007 Protein metabolism in glucocorticoid excess: study in Cushing’s syndrome and the effect of treatment. Am J Physiol 292: E1426–E1432.

    CAS  Google Scholar 

  186. 186

    Goldstein RE, Rossetti L, Palmer BA, et al, 2002 Effects of fasting and glucocorticoids on hepatic gluconeogenesis assessed using two independent methods in vivo. Am J Physiol 283: E946–E957.

    CAS  Google Scholar 

  187. 187

    Monroe SE, Menon KMJ, 1977 Changes in reproductive hormone secretion during the climacteric and postmenopausal periods. Clin Obstet Gynecol 20: 113–122.

    PubMed  Article  CAS  Google Scholar 

  188. 188

    Toth MJ, Tchernof A, Sites CK, Poehlman ET, 2000 Effect of menopausal status on body composition and abdominal fat distribution. Int J Obesity 24: 226–231.

    Article  CAS  Google Scholar 

  189. 189

    Franklin RM, Ploutz-Snyder L, Kanaley JA, 2009 Longitudinal changes in abdominal fat distribution with menopause. Metabolism 58: 311–315.

    PubMed  Article  CAS  Google Scholar 

  190. 190

    Macdonald HM, New SA, Campbell MK, Reid DM, 2003 Longitudinal changes in weight in perimenopausal and early postmenopausal women: effects of dietary energy intake, energy expenditure, dietary calcium intake and hormone replacement therapy. Int J Obesity 27: 669–676.

    Article  CAS  Google Scholar 

  191. 191

    Piché ME, Weisnagel SJ, Corneau L, Nadeau A, Bergeron J, Lemieux S, 2005 Contribution of abdominal visceral obesity and insulin resistance to the cardiovascular risk profile of postmenopausal women. Diabetes 54: 770–777.

    PubMed  Article  Google Scholar 

  192. 192

    Motivala AA, Rose PA, Kim HM, et al, 2008 Cardiovascular risk, obesity, and myocardial blood flow in postmenopausal women. J Nucl Cardiol 15: 510–517.

    PubMed  Article  Google Scholar 

  193. 193

    Mesch VR, Siseles NO, Maidana PN, et al, 2008 Androgens in relationship to cardiovascular risk factors in the menopausal transition. Climacteric 11: 509–517.

    PubMed  Article  CAS  Google Scholar 

  194. 194

    Korytkowski MT, Krug EI, Daly MA, DeRiso L, Wilson JW, Winters SJ, 2005 Does androgen excess contribute to the cardiovascular risk profile in postmenopausal women with type 2 diabetes? Metabolism 54: 1626–1631.

    PubMed  Article  CAS  Google Scholar 

  195. 195

    Bonomo SM, Rigamonti AE, Giunta M, Galimberti D, Guaita A, Gagliano MG, Müller EE, Cella SG, 2009 Menopausal transition: A possible risk factor for brain pathologic events. Neurobiol Aging 30: 71–80.

    PubMed  Article  CAS  Google Scholar 

  196. 196

    Kaye SA, Folsom AR, 1991 Is serum cortisol associated with body-fat distribution in postmenopausal women. Int J Obesity 15: 437–439.

    CAS  Google Scholar 

  197. 197

    Lindsay R, 1996 The menopause and osteoporosis. Obstet Gynecol 87: 16S–19S.

    PubMed  Article  CAS  Google Scholar 

  198. 198

    Tenover JL, 1967 Testosterone and the aging male. J Androl 18: 103–106.

    Google Scholar 

  199. 199

    Delaporte E, 2008 Affections inflammatoires à médiation immunitaire et psoriasis. Ann Dermatol 135: Suppl 4: 269–274.

    Google Scholar 

  200. 200

    Karadag AS, Yavuz B, Ertugrul DT, et al, 2010 Is psoriasis a pre-atherosclerotic disease? Increased insulin resistance and impaired endothelial function in patients with psoriasis. Int J Dermatol 49: 642–646.

    PubMed  Article  Google Scholar 

  201. 201

    Reutrakul S, Hathout EH, Janner D, et al, 2004 Familial juvenile autoimmune hypothyroidism, pituitary enlargement, obesity, and insulin resistance. Thyroid 14: 311–319.

    PubMed  Article  CAS  Google Scholar 

  202. 202

    Mauras N, DelGiorno C, Kollman C, et al, 2010 Obesity without established comorbidities of the metabolic syndrome is associated with a proinflammatory and prothrombotic state, even before the onset of puberty in children. J Clin Endocrinol Metab 95: 1060–1068.

    PubMed  Article  CAS  Google Scholar 

  203. 203

    van Dijk SJ, Feskens EJM, Bos MB, et al, 2009 A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr 90: 1656–1664.

    PubMed  Article  CAS  Google Scholar 

  204. 204

    Fleming ME, Sales KM, Winslet MC, 2005 Diet and colorectal cancer: implications for the obese and devotees of the Atkins diet. Colorect Dis 7: 128–132.

    Article  CAS  Google Scholar 

  205. 205

    Jaggers JR, Sui XM, Hooker P, et al, 2009 Metabolic syndrome and risk of cancer mortality in men. Eur J Cancer 45: 1831–1838.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  206. 206

    Russo A, Autelitano M, Bisanti L, 2008 Metabolic syndrome and cancer risk. Eur J Cancer 44: 293–297.

    PubMed  Article  Google Scholar 

  207. 207

    Tubiash HS, 1951 The anaerogenic effect of nitrates and nitrites on Gram-negative enteric bacteria. Am J Publ Hlth 41: 833–838.

    Article  CAS  Google Scholar 

  208. 208

    Dunca BB, Schmidt MI, 2001 Chronic activation of the innate immune system may underlie the metabolic syndrome. S Paulo Med J 119: 122–127.

    Article  Google Scholar 

  209. 209

    Cani PD, Possemiers S, van de Wiele T, et al, 2009 Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58: 1091–1103.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  210. 210

    Ley RE, Turnbaugh PJ, Klein S, Gordon JI, 2006 Human gut microbes associated with obesity. Nature 444: 1022–1023.

    Article  CAS  Google Scholar 

  211. 211

    Najzer M, Seeley RJ, 2006 Obesity and gut flora. Nature 444: 1009–1010.

    Article  CAS  Google Scholar 

  212. 212

    Delzenne NM, Cani PD, 2010 Nutritional modulation of gut microbiota in the context of obesity and insulin resistance: Potential interest of prebiotics. Int Dairy J 20: 277–280.

    Article  CAS  Google Scholar 

  213. 213

    Manco M, Putignani L, Bottazzo GF, 2010 Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev 31: 817–844.

    PubMed  Article  CAS  Google Scholar 

  214. 214

    Creely SJ, McTernan PG, Kusminski CM, et al, 2007 Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol 292: E740–E747.

    Article  CAS  Google Scholar 

  215. 215

    Boivin MA, Ye D, Kennedy JC, Al-Sadi R, Shepela C, Ma TY, 2007 Mechanism of glucocorticoid regulation of the intestinal tight junction barrier. Am J Physiol 292: G590-G598.

    Google Scholar 

  216. 216

    Hales CN, Barker DJP, 2001 The thrifty phenotype hypothesis. Br Med Bull 60: 5–20.

    PubMed  Article  CAS  Google Scholar 

  217. 217

    Flodmark CE, 2002 Thrifty genotypes and phenotypes in the pathogenesis of early-onset obesity. Acta Paediatr 91: 737–738.

    PubMed  Article  CAS  Google Scholar 

  218. 218

    Sclafani A, Springer D, 1976 Dietary obesity in adult rats: Similarities to hypothalamic and human obesity syndromes. Physiol Behav 17: 461–471.

    PubMed  Article  CAS  Google Scholar 

  219. 219

    Prats E, Monfar M, Iglesias R, Castellà J, Alemany M, 1989 Energy intake of rats fed a cafeteria diet. Physiol Behav 45: 263–272.

    PubMed  Article  CAS  Google Scholar 

  220. 220

    Rogers PJ, 1985 Returning ‘cafeteria- fed’ rats to a chow diet: negative contrast and effects of obesity on feeding behaviour. Physiol Behav 35: 493–499.

    PubMed  Article  CAS  Google Scholar 

  221. 221

    Welle SL, Amatruda JM, Forbes GB, Lockwood DH, 1984 Resting metabolic rates of obese women after rapid weight loss. J Clin Endocrinol Metab 59: 113–122.

    Article  Google Scholar 

  222. 222

    Brownell KD, Greenwood MRC, Stellar E, Shrager EE, 1986 The effects of repeated cycles of weight loss and regain in rats. Physiol Behav 38: 459–464.

    PubMed  Article  CAS  Google Scholar 

  223. 223

    Kirschner MA, Schneider G, Ertel NH, Gorman J, 1988 An 8-year experience with a very -low -calorie formula diet for control of major obesity. Int J Obesity 12: 69–80.

    CAS  Google Scholar 

  224. 224

    van Itallie TB, Kral JG, 1981 The dilemma of morbid obesity. J Am Med Assoc 246: 999–1003.

    Article  Google Scholar 

  225. 225

    Dulloo AG, Girardier L, 1992 Influence of dietary composition on energy expenditure during recovery of body weight in the rat. Implications for catch up growth and obesity relapse. Metabolism 41: 1336–1342.

    PubMed  CAS  Google Scholar 

  226. 226

    Bradley P, 1978 The ponderostat and a physiological model of obesity. Am J Clin Nutr 31: 1976–1978.

    Google Scholar 

  227. 227

    Dube MG, Xu B, Crowley WR, Kalra PS, Kalra SP, 1994 Evidence that neuropeptide Y is a physiological signal for normal food intake. Brain Res 646: 341–344.

    PubMed  Article  CAS  Google Scholar 

  228. 228

    Yang L, Scott KA, Hyun J, et al, 2009 Role of dorsomedial hypothalamic neuropeptide Y in modulating food intake and energy balance. J Neurosci 29: 179–190.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  229. 229

    Benoit S, Schwartz M, Baskin D, Woods SC, Seeley RJ, 2000 CNS melanocortin system involvement in the regulation of food intake. Horm Behav 37: 299–305.

    PubMed  Article  CAS  Google Scholar 

  230. 230

    Ellacott KLJ, Cone RD, 2006 The role of the central melanocortin system in the regulation of food intake and energy homeostasis: lessons from mouse models. Phil Trans Roy Soc Lond B 361: 1265–1274.

    Article  CAS  Google Scholar 

  231. 231

    Raffin-Sanson ML, de Keyzer Y, Bertagna X, 2003 Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions. Eur J Endocrinol 149: 79–90.

    PubMed  Article  CAS  Google Scholar 

  232. 232

    Costin GE, Hearing VJ, 2007 Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21: 976–994.

    PubMed  Article  CAS  Google Scholar 

  233. 233

    Schwartz RA, 1994 Acanthosis nigricans. J Am Acad Dermatol 31: 1–19.

    PubMed  Article  CAS  Google Scholar 

  234. 234

    Kahn CR, Flier JS, Bar RS, et al, 1976 The syndromes of insulin resistance and acanthosis nigricans. Insulin-receptor disorders in man. N Engl J Med 294: 739–745.

    PubMed  CAS  Google Scholar 

  235. 235

    López M, Lage R, Tung CL, et al, 2007 Orexin expression is regulated by alpha-melanocyte stimulating hormone. J Neuroendocrinol 19: 703–707.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  236. 236

    Rodgers RJ, Halford JCG, Nunes de Souza RL, et al, 2000 Dose-response effects of orexin-A on food intake and the behavioural satiety sequence in rats. Regul Peptides 96: 71–84.

    Article  CAS  Google Scholar 

  237. 237

    Salin-Pascual RI, 2001 The role of the hypothalamic neuropeptides hypocretin/orexin in the sleep-wake cycle. Isr Med Assoc J 3: 144–146.

    PubMed  CAS  Google Scholar 

  238. 238

    Bass J, Turek FW, 2005 Sleepless in America. A pathway to obesity and the metabolic syndrome? Arch Intern Med 165: 15–16.

    PubMed  Google Scholar 

  239. 239

    Choi KM, Lee JS, Park HS, Baik SH, Choi DS, Kim SM, 2008 Relationship between sleep duration and the metabolic syndrome:Korean National Health Nutrition Survey 2001. Int J Obesity 32: 1091–1097.

    Article  CAS  Google Scholar 

  240. 240

    Donga E, van Dijk M, van Dijk JG, et al, 2010 A single night of partial sleep deprivation induces insulin resistance in multiple metabolic pathways in healthy subjects. J Clin Endocrinol Metab 95: 2963–2968.

    PubMed  Article  CAS  Google Scholar 

  241. 241

    Rosa Neto JC, Lira FS, Venancio DP, et al, 2010 Sleep deprivation affects inflammatory marker expression in adipose tissue. Lip Hlth Dis 9: 125.

    Article  CAS  Google Scholar 

  242. 242

    Hasler G, Buysse DJ, Klaghofer R, et al, 2004 The association between short sleep duration and obesity in young adults: A 13-year prospective study. Sleep 27: 661–666.

    PubMed  Article  Google Scholar 

  243. 243

    Nielsen LS, Danielsen KV, Sørensen TIA, 2011 Short sleep duration as a possible cause of obesity: critical analysis of the epidemiological evidence. Obes Rev 12: 78–92.

    PubMed  Article  CAS  Google Scholar 

  244. 244

    Resta O, Barbaro MPF, Bonfitto P, et al, 2003 Low sleep quality and daytime sleepiness in obese patients without obstructive sleep apnoea syndrome. J Intern Med 253: 536–543.

    PubMed  Article  CAS  Google Scholar 

  245. 245

    Fukagawa K, Sakata T, Yoshimatsu H, Fujimoto K, Uchimura K, Asano C, 1992 Advance shift of feeding circadian rhythm induced by obesity progression in Zucker rats. Am J Physiol 263: R1169–R1175.

    PubMed  CAS  Google Scholar 

  246. 246

    Dickmeis T, Lahiri K, Nica G, et al, 2007 Glucocorticoids play a key role in circadian cell cycle rhythms. PLoS Biol 5: 854–864.

    Article  CAS  Google Scholar 

  247. 247

    Dallman MF, Viau VG, Bhatnagar S, Gomez F, Laugero K, Beli ME, 2011 Corticotropin-releasing factor, corticosteroids, stress, and sugar: energy balance, the brain and behavior. Hormones Brain and Behavior 1: 571–631.

    Google Scholar 

  248. 248

    Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB, 2005 Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 493: 63–71.

    PubMed  Article  CAS  Google Scholar 

  249. 249

    López M, Varela L, Vázquez MJ, et al, 2010 Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16: 1001–1008.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  250. 250

    Handa RJ, Burgess LH, Kerr JE, O’Keefe JA, 1994 Gonadal steroid hormone receptors and sex differences in the hypothalamo-pituitary-adrenal axis. Horm Behav 28: 464–476.

    Article  CAS  Google Scholar 

  251. 251

    Kiss A, Jezova D, Aguilera G, 1994 Activity of the hypothalamic-pituitary-adrenal axis and sympathoadrenal system during food and water deprivation in the rat. Brain Res 663: 84–92.

    PubMed  Article  CAS  Google Scholar 

  252. 252

    Yoshimatsu H, Niijima A, Oomura Y, Katafuchi T, 1988 Lateral and ventromedial hypothalamic influences on hepatic autonomic nerve activity in the rat. Brain Res Bull 21: 239–244.

    PubMed  Article  CAS  Google Scholar 

  253. 253

    Atrens DM, Holmes LJ, Jirasek M, Siviy SM, Solowij N, 1987 Hypothalamic modulation of thermogenesis and energy substrate utilization. Brain Res Bull 18: 303–308.

    PubMed  Article  CAS  Google Scholar 

  254. 254

    Kuo JJ, Silva AA, Hall JE, 2003 Hypothalamic melanocortin receptors and chronic regulation of arterial pressure and renal function. Hypertension 41: 768–774.

    PubMed  Article  CAS  Google Scholar 

  255. 255

    Wise RA, 2006 Role of brain dopamine in food reward and reinforcement. Phil Trans Roy Soc Lond B 361: 1149–1158.

    Article  CAS  Google Scholar 

  256. 256

    Meguid MM, Fetissov SO, Varma M, et al, 2000 Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 16: 843–857.

    PubMed  Article  CAS  Google Scholar 

  257. 257

    Kelley AE, Baldo BA, Pratt WE, Will MJ, 2005 Corticostriatal-hypothalamic circuitry and food motivation: Integration of energy, action and reward. Physiol Behav 86: 773–795.

    PubMed  Article  CAS  Google Scholar 

  258. 258

    Grill HJ, 2006 Distributed neural control of energy balance: Contributions from hindbrain and hypothalamus. Obesity 14: Suppl 5: 216–221.

    Article  Google Scholar 

  259. 259

    Cummings DE, Overduin J, 2007 Gastrointestinal regulation of food intake. J Clin Invest 117: 13–23.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  260. 260

    Colombani AL, Carneiro L, Benani A, et al, 2009 Enhanced hypothalamic glucose sensing in obesity: Alteration of redox signaling. Diabetes 58: 2189–2197.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  261. 261

    Horn EM, Waldrop TG, 1997 Oxygen-sensing neurons in the caudal hypothalamus and their role in cardiorespiratory control. Resp Physiol 110: 219–228.

    Article  CAS  Google Scholar 

  262. 262

    Mason WT, 1980 Supraoptic neurones of rat hypothalamus are osmosensitive. Nature 287: 154–157.

    PubMed  Article  CAS  Google Scholar 

  263. 263

    Rothwell NJ, Stock MJ, 1987 Effect of diet and fenfluramine on thermogenesis in the rat: Possible involvement of serotonergic mechanisms. Int J Obesity 11: 319–324.

    CAS  Google Scholar 

  264. 264

    Heal DJ, Cheetham SC, Prow MR, Martin KF, Buckett WR, 1998 A comparison of the effects on central 5-HT function of sibutramine hydrochloride and other weight-modifying agents. Br J Pharmacol 125: 301–308.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  265. 265

    Levine LR, Rosenblatt S, Bosomworth J, 1987 Use of a serotonin re-uptake inhibitor, fluoxetine, in the treatment of obesity. Int J Obesity 11: 185–190.

    Google Scholar 

  266. 266

    Nielsen JA, Chapin DS, Johnson JL, Torgersen LK, 1992 Sertraline, a serotonin uptake inhibitor, reduces food intake and body weight in lean rats and genetically obese mice. Am J Clin Nutr 55:Suppl 1: 185–188.

    Article  Google Scholar 

  267. 267

    Yu S, Holsboer F, Almeida OFX, 2008 Neuronal actions of glucocorticoids: Focus on depression. J Steroid Biochem Mol Biol 108: 300–309.

    PubMed  Article  CAS  Google Scholar 

  268. 268

    Porter RJ, Gallagher P, Watson S, Young AH, 2004 Corticosteroid-serotonin interactions in depression: a review of the human evidence. Psychopharmacol 173: 1–17.

    Article  CAS  Google Scholar 

  269. 269

    Gómez R, Navarro M, Ferrer B, et al, 2002 A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J Neurosci 22: 9612–9617.

    PubMed  Article  Google Scholar 

  270. 270

    Boyd ST, Fremming BA, 2005 Rimonabant - A selective CB1 antagonist. Ann Pharmacother 39: 684–690.

    PubMed  Article  CAS  Google Scholar 

  271. 271

    Caul WF, Jones JR, Barrett RJ, 1988 Amphetamine’s effects on food consumption and body weight. The role of adaptive processes. Behav Neurosci 102: 441–450.

    PubMed  CAS  Google Scholar 

  272. 272

    Bukowiecki L, Follea N, Jahjah L, 1982 Ephedrine, a potential slimming drug, directly stimulates thermo-genesis in brown adipocytes via β-adrenoreceptors. Int J Obesity 6: 343–350.

    CAS  Google Scholar 

  273. 273

    Michel C, Cabanac M, 1999 Effects of dexamethasone on the body weight set point of rats. Physiol Behav 68: 145–150.

    PubMed  Article  CAS  Google Scholar 

  274. 274

    Messerli FH, Bell DSH, Fonseca V, et al, 2007 Body weight changes with beta-blocker use: Results from GEMINI. Am J Med 120: 610–615.

    PubMed  Article  CAS  Google Scholar 

  275. 275

    Patten SB, Williams JVA, Lavorato DH, Brown L, McLaren L, Eliasziw M, 2009 Major depression, anti-depressant medication and the risk of obesity. Psychoter Psychosomat 78: 182–186.

    Article  Google Scholar 

  276. 276

    Vanina Y, Podolskaya A, Sedky K, et al, 2002 Body weight changes associated with psychopharmacology. Psychiat Serv 53: 842–847.

    Article  Google Scholar 

  277. 277

    Fornari A, Pedrazzi P, Lippi G, Picciotto MR, Zoli M, Zini I, 2007 Nicotine withdrawal increases body weight, neuropeptide Y and Agouti-related protein expression in the hypothalamus and decreases uncoupling protein-3 expression in the brown adipose tissue in high-fat fed mice. Neurosci Lett 411: 72–76.

    PubMed  Article  CAS  Google Scholar 

  278. 278

    Keck PE, McElroy SL, 2003 Bipolar disorder, obesity, and pharmacotherapy-associated weight gain. J Clin Psychiat 64: 1426–1435.

    Article  Google Scholar 

  279. 279

    Mussell MP, Mitchell JE, de Zwaan M, Crosby RD, Seim HC, Crow SJ, 1996 Clinical characteristics associated with binge eating in obese females: A descriptive study. Int J Obesity 20: 324–331.

    CAS  Google Scholar 

  280. 280

    Fandiño J, Moreira RO, Preissler C, et al, 2010 Impact of binge eating disorder in the psychopathological profile of obese women. Comprehens Psychiat 51: 110–114.

    Article  Google Scholar 

  281. 281

    Fairburn CG, Cooper Z, Doll HA, Norman P, O’Connor M, 2000 The natural course of bulimia nervosa and binge eating disorder in young women. Arch Gen Psychiat 57: 659–665.

    PubMed  Article  CAS  Google Scholar 

  282. 282

    Boggiano MM, Artiga AI, Pritchett CE, Chandler-Laney PC, Smith ML, Eldridge AJ, 2007 High intake of palatable food predicts binge-eating independent of susceptibility to obesity: an animal model of lean vs obese binge-eating and obesity with and without binge-eating. Int J Obesity 31: 1357–1367.

    Article  CAS  Google Scholar 

  283. 283

    Dallman MF, Pecoraro N, Akana SF, et al, 2003 Chronic stress and obesity: A new view of “comfort food”. Proc Nat Acad Sci USA 100: 11696–11701.

    PubMed  Article  CAS  Google Scholar 

  284. 284

    Kandiah J, Yake M, Jones J, Meyer M, 2006 Stress influences appetite and comfort food preferences in college women. Nutr Res 26: 118–123.

    Article  CAS  Google Scholar 

  285. 285

    Belsare PV, Watve MG, Ghaskadbi SS, Bhat DS, Yajnik CS, Jog M, 2010 Metabolic syndrome: Aggression control mechanisms gone out of control. Med Hypoth 74: 578–589.

    Article  CAS  Google Scholar 

  286. 286

    Alemany M, 2011 The defense of adipose tissue against excess substrate-induced hyperthrophia: Immune system cell infiltration and arrested metabolic activity. J Clin Endocrinol Metab 96: 66–68.

    PubMed  Article  CAS  Google Scholar 

  287. 287

    Alemany M, 2012 Do the interactions between gluco-corticoids and sex hormones regulate the development of the metabolic syndrome? Front Endocrinol 3: 27.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marià Alemany PhD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alemany, M. Steroid hormones interrelationships in the metabolic syndrome: An introduction to the ponderostat hypothesis. Hormones 11, 272–289 (2012). https://doi.org/10.14310/horm.2002.1356

Download citation

Key words

  • Androgens
  • Estrogens
  • Gluco-corticoids
  • Metabolic syndrome
  • Obesity
  • Ponderostat