Advertisement

Hormones

, Volume 13, Issue 4, pp 476–487 | Cite as

The sclerostin story: From human genetics to the development of novel anabolic treatment for osteoporosis

  • Maria P. Yavropoulou
  • Christos Xygonakis
  • Maria Lolou
  • Fotini Karadimou
  • John G. Yovos
Review

Abstract

Sclerosteosis and Van Buchem disease are two rare bone sclerosing disorders characterized by increased bone mineral density, tall stature and entrapment of cranial nerves due to overgrowth of a highly dense bone. Recent advances in human genetics have revealed the genetic background of these disorders by cloning the SOST gene, which is localized on chromosome region 17q12-q21 and codes for sclerostin. Sclerostin is a protein produced almost exclusively from osteocytes inhibiting bone formation by both osteoblasts and osteocytes. At the molecular level, sclerostin inhibits the Wnt signaling pathway, which plays a critical role in osteoblast development and function. Induced sclerostin deficiency in mice reproduces the bone sclerosing human diseases, while sclerostin excess leads to bone loss and reduced bone strength. The extracellular nature of sclerostin has rendered it a promising target for the development of novel anti-osteoporotic treatment. Otherwise healthy carriers of the SOST mutation present with increased bone mass and low levels of sclerostin in serum in contrast to patients with sclerosteosis, who exhibit undetectable levels, thus pointing to the possibility of titration of sclerostin levels in the circulation. Based on these unique characteristics, human anti-sclerostin antibodies have been developed and tested in ovariectomized rats and monkeys, demonstrating very promising results in bone formation. Clinical phase II and III trials are currently underway thereby translating human genetics to drug development.

Key words

Antibodies Blosozumab BPS804 Romosozumab Sclerostin 

References

  1. 1.
    Manolagas SC, Jilka RL, 1995 Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332: 305–311.CrossRefGoogle Scholar
  2. 2.
    Manolagas SC, 2000 Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21: 115–137.PubMedGoogle Scholar
  3. 3.
    Beighton P, Durr L, Hamersma H, 1976 The clinical features of sclerosteosis. A review of the manifestations in twenty-five affected individuals. Ann Intern Med 84: 393–397.CrossRefGoogle Scholar
  4. 4.
    van Bezooijen RL, Roelen BA, Visser A, et al, 2004 Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199: 805–814.CrossRefGoogle Scholar
  5. 5.
    Balemans W, Ebeling M, Patel N, et al, 2001 Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10: 537–543.CrossRefGoogle Scholar
  6. 6.
    Piters E, Culha C, Moester M, et al, 2010 First missense mutation in the SOST gene causing sclerosteosis by loss of sclerostin function. Hum Mutat 31: E1526–1543.CrossRefGoogle Scholar
  7. 7.
    van Bezooijen RL, Svensson JP, Eefting D, et al, 2007 Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res 22: 19–28.CrossRefGoogle Scholar
  8. 8.
    van Lierop AH, Hamdy NA, Hamersma H, et al, 2011 Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res 26: 2804–2811.CrossRefGoogle Scholar
  9. 9.
    Beighton P, 1988 Sclerosteosis. J Med Genet 25: 200–203.CrossRefGoogle Scholar
  10. 10.
    Hamersma H, Gardner J, Beighton P, 2003 The natural history of sclerosteosis. Clin Genet 63: 192–197.CrossRefGoogle Scholar
  11. 11.
    Booth JB, 1982 Medical management of sensorineural hearing loss. Part II: Musculo-skeletal system. J Laryngol Otol 96: 773–795.CrossRefGoogle Scholar
  12. 12.
    Tacconi P, Ferrigno P, Cocco L, et al, 1998 Sclerosteosis: report of a case in a black African man. Clin Genet 53: 497–501.CrossRefGoogle Scholar
  13. 13.
    Beighton P, Barnard A, Hamersma H, van der Wouden A, 1984 The syndromic status of sclerosteosis and van Buchem disease. Clin Genet 25: 175–181.CrossRefGoogle Scholar
  14. 14.
    du Plessis JJ, 1993 Sclerosteosis: neurosurgical experience with 14 cases. J Neurosurg 78: 388–392.CrossRefGoogle Scholar
  15. 15.
    Gardner JC, van Bezooijen RL, Mervis B, et al, 2005 Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab 90: 6392–6395.CrossRefGoogle Scholar
  16. 16.
    Van Buchem FS, Hadders HN, Ubbens R, 1955 An uncommon familial systemic disease of the skeleton: hyperostosis corticalis generalisata familiaris. Acta radiol 44: 109–120.CrossRefGoogle Scholar
  17. 17.
    Van Buchem FS, Hadders HN, Hansen JF, Woldring MG, 1962 Hyperostosis corticalis generalisata. Report of seven cases. Proc K Ned Akad Wet C 65: 205–217.Google Scholar
  18. 18.
    van Buchem FS, 1971 Hyperostosis corticalis generalisata. Eight new cases. Acta Med Scand 189: 257–267.CrossRefGoogle Scholar
  19. 19.
    Brunkow ME, Gardner JC, Van Ness J, et al, 2001 Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68: 577–589.CrossRefGoogle Scholar
  20. 20.
    Staehling-Hampton K, Proll S, Paeper BW, et al, 2002 A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 110: 144–152.CrossRefGoogle Scholar
  21. 21.
    Balemans W, Patel N, Ebeling M, et al, 2002 Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 39: 91–97.CrossRefGoogle Scholar
  22. 22.
    van Lierop AH, Hamdy NA, van Egmond ME, Bakker E, Dikkers FG, Papapoulos SE, 2013 Van Buchem disease: clinical, biochemical, and densitometric features of patients and disease carriers. J Bone Miner Res 28: 848–854.CrossRefGoogle Scholar
  23. 23.
    Loots GG, Kneissel M, Keller H, et al, 2005 Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15: 928–935.CrossRefGoogle Scholar
  24. 24.
    Vanhoenacker FM, Balemans W, Tan GJ, et al, 2003 Van Buchem disease: lifetime evolution of radioclinical features. Skeletal Radiol 32: 708–718.CrossRefGoogle Scholar
  25. 25.
    Lewiecki EM, 2011 Sclerostin: a novel target for intervention in the treatment of osteoporosis. Discov Med 12: 263–273.PubMedGoogle Scholar
  26. 26.
    Yavropoulou MP, Yovos JG, 2007 The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones (Athens) 6: 279–294.CrossRefGoogle Scholar
  27. 27.
    Johnson ML, 2004 The high bone mass family—the role of Wnt/Lrp5 signaling in the regulation of bone mass. J Musculoskelet Neuronal Interact 4: 135–138.PubMedGoogle Scholar
  28. 28.
    Ott SM, 2005 Sclerostin and Wnt signaling—the pathway to bone strength. J Clin Endocrinol Metab 90: 6741–6743.CrossRefGoogle Scholar
  29. 29.
    Gong Y, Slee RB, Fukai N, et al, 2001 LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107: 513–523.CrossRefGoogle Scholar
  30. 30.
    Little RD, Carulli JP, Del Mastro RG, et al, 2002 A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70: 11–19.CrossRefGoogle Scholar
  31. 31.
    Boyden LM, Mao J, Belsky J, et al, 2002 High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346: 1513–1521.CrossRefGoogle Scholar
  32. 32.
    Van Wesenbeeck L, Cleiren E, Gram J, et al, 2003 Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72: 763–771.CrossRefGoogle Scholar
  33. 33.
    Li Y, Pawlik B, Elcioglu N, et al, 2010 LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am J Hum Genet 86: 696–706.CrossRefGoogle Scholar
  34. 34.
    Kato M, Patel MS, Levasseur R, et al, 2002 Cbfal-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157: 303–314.CrossRefGoogle Scholar
  35. 35.
    Sims NA, Chia LY, 2012 Regulation of sclerostin expression by paracrine and endocrine factors. Clin Rev Bone Miner Metab 10: 98–107.CrossRefGoogle Scholar
  36. 36.
    Bellido T, Ali AA, Gubrij I, et al, 2005 Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146: 4577–4583.CrossRefGoogle Scholar
  37. 37.
    van Lierop AH, Witteveen JE, Hamdy NA, Papapoulos SE, 2010 Patients with primary hyperparathyroidism have lower circulating sclerostin levels than euparathyroid controls. Eur J Endocrinol 163: 833–837.CrossRefGoogle Scholar
  38. 38.
    Gooi JH, Pompolo S, Karsdal MA, et al, 2010 Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone 46: 1486–1497.CrossRefGoogle Scholar
  39. 39.
    Robling AG, Niziolek PJ, Baldridge LA, et al, 2008 Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283: 5866–5875.CrossRefGoogle Scholar
  40. 40.
    Bonnet N, Ferrari SL, 2010 Exercise and the skeleton: how it works and what it really does. IBMS BoneKEy 7: 235–248.CrossRefGoogle Scholar
  41. 41.
    Gaudio A, Pennisi P, Bratengeier C, et al, 2010 Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95: 2248–2253.CrossRefGoogle Scholar
  42. 42.
    Modder UI, Clowes JA, Hoey K, et al, 2011 Regulation of circulating sclerostin levels by sex steroids in women and in men. J Bone Miner Res 26: 27–34.CrossRefGoogle Scholar
  43. 43.
    Yao W, Cheng Z, Busse C, Pham A, Nakamura MC, Lane NE, 2008 Glucocorticoid excess in mice results in early activation of osteoclastogenesis and adipogenesis and prolonged suppression of osteogenesis: a longitudinal study of gene expression in bone tissue from glucocorticoid-treated mice. Arthritis Rheum 58: 1674–1686.CrossRefGoogle Scholar
  44. 44.
    Ohnaka K, Tanabe M, Kawate H, Nawata H, Takayanagi R, 2005 Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochem Biophys Res Commun 329: 177–181.CrossRefGoogle Scholar
  45. 45.
    Guanabens N, Gifre L, Peris P, 2014 The role of Wnt signaling and sclerostin in the pathogenesis of glucocorticoid-induced osteoporosis. Curr Osteoporos Rep 12: 90–97.CrossRefGoogle Scholar
  46. 46.
    van Lierop AH, van der Eerden AW, Hamdy NA, Hermus AR, den Heijer M, Papapoulos SE, 2012 Circulating sclerostin levels are decreased in patients with endogenous hypercortisolism and increase after treatment. J Clin Endocrinol Metab 97: E1953–1957.CrossRefGoogle Scholar
  47. 47.
    Gifre L, Ruiz-Gaspa S, Monegal A, et al, 2013 Effect of glucocorticoid treatment on Wnt signalling antagonists (sclerostin and Dkk-1) and their relationship with bone turnover. Bone 57: 272–276.CrossRefGoogle Scholar
  48. 48.
    Genetos DC, Yellowley CE, Loots GG, 2011 Prostaglandin E2 signals through PTGER2 to regulate sclerostin expression. PLoS One 6: e17772.CrossRefGoogle Scholar
  49. 49.
    Walker EC, McGregor NE, Poulton IJ, et al, 2008 Cardiotrophin-1 is an osteoclast-derived stimulus of bone formation required for normal bone remodeling. J Bone Miner Res 23: 2025–2032.CrossRefGoogle Scholar
  50. 50.
    Walker EC, McGregor NE, Poulton IJ, et al, 2010 Oncostatin M promotes bone formation independently of resorption when signaling through leukemia inhibitory factor receptor in mice. J Clin Invest 120: 582–592.CrossRefGoogle Scholar
  51. 51.
    Yang F, Tang W, So S, de Crombrugghe B, Zhang C, 2010 Sclerostin is a direct target of osteoblast-specific transcription factor osterix. Biochem Biophys Res Commun 400: 684–688.CrossRefGoogle Scholar
  52. 52.
    Quach JM, Walker EC, Allan E, et al, 2011 Zinc finger protein 467 is a novel regulator of osteoblast and adipocyte commitment. J Biol Chem 286: 4186–4198.CrossRefGoogle Scholar
  53. 53.
    Sims NA, Johnson RW, 2012 Leukemia inhibitory factor: a paracrine mediator of bone metabolism. Growth Factors 30: 76–87.CrossRefGoogle Scholar
  54. 54.
    Lorenzo J, 2008 Ephs and ephrins: a new way for bone cells to communicate. J Bone Miner Res 23: 1168–1169.CrossRefGoogle Scholar
  55. 55.
    Vincent C, Findlay DM, Welldon KJ, et al, 2009 Proinflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNF alpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts. J Bone Miner Res 24: 1434–1449.CrossRefGoogle Scholar
  56. 56.
    Drake MT, Srinivasan B, Modder UI, et al, 2010 Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab 95: 5056–5062.CrossRefGoogle Scholar
  57. 57.
    Arasu A, Cawthon PM, Lui LY, et al, 2012 Serum sclerostin and risk of hip fracture in older Caucasian women. J Clin Endocrinol Metab 97: 2027–2032.CrossRefGoogle Scholar
  58. 58.
    Ardawi MS, Rouzi AA, Al-Sibiani SA, Al-Senani NS, Qari MH, Mousa SA, 2012 High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the Center of Excellence for Osteoporosis Research Study. J Bone Miner Res 27: 2592–2602.CrossRefGoogle Scholar
  59. 59.
    Garnero P, Sornay-Rendu E, Munoz F, Borel O, Chapurlat RD, 2013 Association of serum sclerostin with bone mineral density, bone turnover, steroid and parathyroid hormones, and fracture risk in postmenopausal women: the OFELY study. Osteoporos Int 24: 489–494.CrossRefGoogle Scholar
  60. 60.
    Szulc P, Bertholon C, Borel O, Marchand F, Chapurlat R, 2013 Lower fracture risk in older men with higher sclerostin concentration: a prospective analysis from the MINOS study. J Bone Miner Res 28: 855–864.CrossRefGoogle Scholar
  61. 61.
    Clarke BL, Drake MT, 2013 Clinical utility of serum sclerostin measurements. Bonekey Rep 2: 361.CrossRefGoogle Scholar
  62. 62.
    Dawson-Hughes B, Harris SS, Ceglia L, Palermo NJ, 2014 Serum sclerostin levels vary with season. J Clin Endocrinol Metab 99: E149–152.CrossRefGoogle Scholar
  63. 63.
    Gatti D, Viapiana O, Adami S, Idolazzi L, Fracassi E, Rossini M, 2012 Bisphosphonate treatment of postmenopausal osteoporosis is associated with a dose dependent increase in serum sclerostin. Bone 50: 739–742.CrossRefGoogle Scholar
  64. 64.
    Appel H, Ruiz-Heiland G, Listing J, et al, 2009 Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 60: 3257–3262.CrossRefGoogle Scholar
  65. 65.
    He JW, Yue H, Hu WW, Hu YQ, Zhang ZL, 2011 Contribution of the sclerostin domain-containing protein 1 (SOSTDC1) gene to normal variation of peak bone mineral density in Chinese women and men. J Bone Miner Metab 29: 571–581.CrossRefGoogle Scholar
  66. 66.
    Li X, Ominsky MS, Niu QT, et al, 2008 Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. Journal of Bone and Mineral Research 23: 860–869.CrossRefGoogle Scholar
  67. 67.
    Winkler DG, Sutherland MK, Geoghegan JC, et al, 2003 Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22: 6267–6276.CrossRefGoogle Scholar
  68. 68.
    Li X, Ominsky MS, Warmington KS, et al, 2009 Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24: 578–588.CrossRefGoogle Scholar
  69. 69.
    Ominsky MS, Vlasseros F, Jolette J, et al, 2010 Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 25: 948–959.CrossRefGoogle Scholar
  70. 70.
    Padhi D, Allison M, Kivitz AJ, et al, 2013 Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: A randomized, double-blind, placebo-controlled study. J Clin Pharmacol: doi: 10.1002/jcph.239.Google Scholar
  71. 71.
    McClung MR, Grauer A, Boonen S, et al, 2014 Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370: 412–420.CrossRefGoogle Scholar
  72. 72.
    McColm J, Hu L, Womack T, Tang CC, Chiang AY, 2014 Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Miner Res 29: 935–943.CrossRefGoogle Scholar
  73. 73.
    Recker R, Benson C, Matsumoto T, et al, 2014 A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res: doi: 10.1002/jbmr.2351.Google Scholar
  74. 74.
    Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ, 2011 Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One 6: e25900.CrossRefGoogle Scholar
  75. 75.
    Becker CB, 2014 Sclerostin inhibition for osteoporosis—a new approach. N Engl J Med 370: 476–477.CrossRefGoogle Scholar
  76. 76.
    Evenepoel P, D’Haese P, Brandenburg V, 2014 Romosozumab in postmenopausal women with osteopenia. N Engl J Med 370: 1664.CrossRefGoogle Scholar
  77. 77.
    Bostrom KI, Rajamannan NM, Towler DA, 2011 The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res 109: 564–577.CrossRefGoogle Scholar
  78. 78.
    Viaene L, Behets GJ, Claes K, et al, 2013 Sclerostin: another bone-related protein related to all-cause mortality in haemodialysis? Nephrol Dial Transplant 28: 3024–3030.CrossRefGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2014

Authors and Affiliations

  • Maria P. Yavropoulou
    • 1
  • Christos Xygonakis
    • 1
  • Maria Lolou
    • 1
  • Fotini Karadimou
    • 1
  • John G. Yovos
    • 1
  1. 1.Division of Clinical and Molecular Endocrinology, 1st Department of Internal Medicine, AHEPA University HospitalAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations