Advertisement

Hormones

, Volume 9, Issue 3, pp 218–231 | Cite as

Sex determination and disorders of sex development according to the revised nomenclature and classification in 46,XX individuals

  • Eleni Kousta
  • Asteroula Papathanasiou
  • Nicos Skordis
Review

Abstract

There have been considerable advances concerning understanding of the early and later stages of ovarian development; a number of genes have been implicated and their mutations have been associated with developmental abnormalities. The most important genes controlling the initial phase of gonadal development, identical in females and males, are Wilms’ tumor suppressor 1 (WT1) and steroidogenic factor 1 (SF1). Four genes are likely to be involved in the subsequent stages of ovarian development (WNT4, DAX1, FOXL2 and RSPO1), but none is yet proven to be the ovarian determining factor. Changes in nomenclature and classification were recently proposed in order to incorporate genetic advances and substitute gender-based diagnostic labels in terminology. The term “disorders of sex development” (DSD) is proposed to substitute the previous term “intersex disorders”. Three main categories have been used to describe DSD in the 46,XX individual: 1) disorders of gonadal (ovarian) development: ovotesticular DSD, previously named true hermaphroditism, testicular DSD, previously named XX males, and gonadal dysgenesis; 2) disorders related to androgen excess (congenital adrenal hyperplasia, aromatase deficiency and P450 oxidoreductase deficiency); and 3) other rare disorders. In this mini-review, recent advances concerning development of the genital system in 46,XX individuals and related abnormalities are discussed. Basic embryology of the ovary and molecular pathways determining ovarian development are reviewed, focusing on mutations disrupting normal ovarian development. Disorders of sex development according to the revised nomenclature and classification in 46,XX individuals are summarized, including genetic progress in the field.

Key words

Disorders of sex development Embryology of the ovary Ovarian development Congenital adrenal hyperplasia Androgen excess Gonadal dysgenesis 

References

  1. 1.
    MacLaughlin DT, Donahoe PK, 2004 Sex determination and differentiation. N Engl J Med 350: 367–378.CrossRefGoogle Scholar
  2. 2.
    Hughes IA, 2004 Female Development — All by Default? N Engl J Med 351: 748–750.CrossRefGoogle Scholar
  3. 3.
    Hughes IA, Houk C, Ahmed SF, Lee PA, LWPES Consensus Group, ESPE Consensus Group, 2006 Consensus statement on management of intersex disorders. Arch Dis Child 91: 554–563.CrossRefGoogle Scholar
  4. 4.
    Dacou-Voutetakis C, 2007 A multidisciplinary approach to the management of children with complex genital anomalies. Nat Clin Pract Endocrinol Metab 3: 668–669.CrossRefGoogle Scholar
  5. 5.
    Sadler TW, 2006 Third to eight weeks: The embryonic period. In: Lippincott Williams & Wilkins, (eds) Lang-man’s Medical Embryology 10th edition, Baltimore, Maryland, USA; pp, 67–87.Google Scholar
  6. 6.
    Sadler TW, 2006 Urogenital system. In: Lippincott Williams & Wilkins (eds) Langman’s Medical Embryology 10th edition, Baltimore, Maryland, USA; pp, 229–256.Google Scholar
  7. 7.
    Sadler TW, 2006 Gametogenesis: Conversion of germ cells into male and female gametes. In: Lippincott Williams & Wilkins (eds) Langman’s Medical Embryology 10th edition, Baltimore, Maryland, USA; pp, 11–29.Google Scholar
  8. 8.
    Wilhelm D, Palmer S, Koopman P, 2007 Sex determination and gonadal development in mammals. Physiol Rev 87: 1–28.CrossRefGoogle Scholar
  9. 9.
    Barbosa AS, Hadjiathanasiou CG, Theodoridis C, et al, 1999 The same mutation affecting the splicing of WT1 gene is present on Frasier syndrome patients with or without Wilms’ tumor. Hum Mutat 13: 146–153.CrossRefGoogle Scholar
  10. 10.
    Jaubert F, Vasiliu V, Patey-Mariaud de Serre N, et al, 2003 Gonad development in Drash and Frasier syndromes depends on WT1 mutations. Arkh Patol 65: 40–44.PubMedGoogle Scholar
  11. 11.
    Demmer L, Primack W, Loik V, Brown R, Therville N, McElreavey K, 1999 Frasier syndrome: a cause of focal segmental glomerulosclerosis in a 46,XX female. J Am Soc Nephrol 10: 2215–2218.PubMedGoogle Scholar
  12. 12.
    Parker KL, Rice DA, Lala DS, et al, 2002 Steroidogenic factor 1: an essential mediator of endocrine development. Recent Prog Horm Res 57: 19–36.CrossRefGoogle Scholar
  13. 13.
    Lala DS, Rice DA, Parker KL, 1992 Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 6: 1249–1258.PubMedGoogle Scholar
  14. 14.
    Mallet D, Bretones P, Michel-Calemard L, Dijoud F, David M, Morel Y, 2004 Gonadal dysgenesis without adrenal insufficiency in a 46,XY patient heterozygous for the nonsense C16X mutation: a case of SF1 haploin-sufficiency. J Clin Endocrinol Metab 89: 4829–4832.CrossRefGoogle Scholar
  15. 15.
    Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL, 1999 A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22: 125–126.CrossRefGoogle Scholar
  16. 16.
    Philibert P, Zenaty D, Lin L, et al, 2007 Mutational analysis of steroidogenic factor 1 (NR5a1) in 24 boys with bilateral anorchia: a French collaborative study. Hum Reprod 22: 3255–3261.CrossRefGoogle Scholar
  17. 17.
    Köhler B, Lin L, Ferraz-de-Souza B, et al, 2008 Five novel mutations in steroidogenic factor 1 (SF1, NR5A1) in 46,XY patients with severe underandrogenization but without adrenal insufficiency. Hum Mutat 29: 59–64.CrossRefGoogle Scholar
  18. 18.
    Lin L, Achermann JC, 2008 Steroidogenic factor-1 (SF-1, Ad4BP, NR5A1) and disorders of testis development. Sex Dev 2: 200–209.CrossRefGoogle Scholar
  19. 19.
    Biason-Lauber A, Schoenle EJ, 2000 Apparently normal ovarian differentiation in a prepubertal girl with transcrip-tionally inactive steroidogenic factor 1 (NR5A1/SF-1) and adrenocortical insufficiency. Am J Hum Genet 67: 1563–1568.CrossRefGoogle Scholar
  20. 20.
    Jeays-Ward K, Hoyle C, Brennan J, et al, 2003 Endothe-lial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130: 3663–3670.CrossRefGoogle Scholar
  21. 21.
    Yao HH, Matzuk MM, Jorgez CJ, et al, 2004 Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 230: 210–215.CrossRefGoogle Scholar
  22. 22.
    Heikkilä M, Prunskaite R, Naillat F, et al, 2005 The partial female to male sex reversal in Wnt-4-deficient females involves induced expression of testosterone biosynthetic genes and testosterone production, and depends on androgen action. Endocrinology 146: 4016–4023.CrossRefGoogle Scholar
  23. 23.
    Vainio S, Heikkilä M, Kispert A, Chin N, McMahon AP, 1999 Female development in mammals is regulated by Wnt-4 signalling. Nature 397: 405–409.CrossRefGoogle Scholar
  24. 24.
    Philibert P, Biason-Lauber A, Rouzier R, et al, 2008 Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and Müllerian duct abnormalities: a French collaborative study. J Clin Endocrinol Metab 93: 895–900.CrossRefGoogle Scholar
  25. 25.
    Biason-Lauber A, Konrad D, Navratil F, Schoenle EJ, 2004 A WNT4 mutation associated with Müllerian-duct regression and virilization in a 46,XX woman. N Engl J Med 351: 792–798.CrossRefGoogle Scholar
  26. 26.
    Biason-Lauber A, De Filippo G, Konrad D, Scarano G, Nazzaro A, Schoenle EJ, 2007 WNT4 deficiency-a clinical phenotype distinct from the classic Mayer-Rokitansky-Küster-Hauser syndrome: a case report. Hum Reprod 22: 224–229.CrossRefGoogle Scholar
  27. 27.
    Zanaria E, Muscatelli F, Bardoni B, et al, 1994 An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372: 635–641.CrossRefGoogle Scholar
  28. 28.
    Bardoni B, Zanaria E, Guioli S, et al, 1994 A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 7: 497–501.CrossRefGoogle Scholar
  29. 29.
    Seminara SB, Achermann JC, Genel M, Jameson JL, Crowley WF, Jr, 1999 X-linked adrenal hypoplasia congenita: a mutation in DAX1 expands the phenotypic spectrum in males and females. J Clin Endocrinol Metab 84: 4501–4509.PubMedGoogle Scholar
  30. 30.
    Yu RN, Ito M, Saunders TL, Camper SA, Jameson JL, 1998 Role of Ahch in gonadal development and gametogenesis. Nat Genet 20: 353–357.CrossRefGoogle Scholar
  31. 31.
    Mizusaki H, Kawabe K, Mukai T, et al, 2003 Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical region on the X chromosome, gene 1) gene transcription is regulated by wnt4 in the female developing gonad. Mol Endocrinol 17: 507–519.CrossRefGoogle Scholar
  32. 32.
    Schmidt D, Ovitt CE, Anlag K, et al, 2004 The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131: 933–942.CrossRefGoogle Scholar
  33. 33.
    Pailhoux E, Vigier B, Vaiman D, et al, 2002 Ontogenesis of female-to-male sex-reversal in XX polled goats. Dev Dyn 224: 39–50.CrossRefGoogle Scholar
  34. 34.
    Beysen D, Vandesompele J, Messiaen L, De Paepe A, De Baere E, 2004 The human FOXL2 mutation database. Hum Mutat 24: 189–193.CrossRefGoogle Scholar
  35. 35.
    Crisponi L, Deiana M, Loi A, et al, 2001 The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27: 159–166CrossRefGoogle Scholar
  36. 36.
    Uhlenhaut NH, Jakob S, Anlag K, et al, 2009 Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139: 1130–1142.CrossRefGoogle Scholar
  37. 37.
    Kim KA, Zhao J, Andarmani S, et al, 2006 R-Spondin proteins: a novel link to beta-catenin activation. Cell Cycle 5: 23–26.CrossRefGoogle Scholar
  38. 38.
    Tomizuka K, Horikoshi K, Kitada R, et al, 2008 R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 17: 1278–1291.CrossRefGoogle Scholar
  39. 39.
    Kocer A, Pinheiro I, Pannetier M, et al, 2008 R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation. BMC Dev Biol 8: 36.CrossRefGoogle Scholar
  40. 40.
    Parma P, Radi O, Vidal V, et al, 2006 R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38: 1304–1309.CrossRefGoogle Scholar
  41. 41.
    Tomaselli S, Megiorni F, De Bernardo C, et al, 2008 Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat 29: 220–226.CrossRefGoogle Scholar
  42. 42.
    Krob G, Braun A, Kuhnle U, 1994 True hermaphroditism: geographical distribution, clinical findings, chromosomes and gonadal histology. Eur J Pediatr 153: 2–10.CrossRefGoogle Scholar
  43. 43.
    Verkauskas G, Jaubert F, Lortat-Jacob S, Malan V, Thibaud E, Nihoul-Fékété C, 2007 The long-term follow up of 33 cases of true hermaphroditism: a 40-year experience with conservative gonadal surgery. J Urol 177: 726–731.CrossRefGoogle Scholar
  44. 44.
    Hadjiathanasiou CG, Brauner R, Lortat-Jacob S, et al, 1994 True hermaphroditism: genetic variants and clinical management. J Pediatr 125: 738–744.CrossRefGoogle Scholar
  45. 45.
    Damiani D, Fellous M, McElreavey K, et al, 1997 True hermaphroditism: clinical aspects and molecular studies in 16 cases. Eur J Endocrinol 136: 201–204.CrossRefGoogle Scholar
  46. 46.
    Berkovitz GD, Fechner PY, Marcantonio SM, et al, 1992 The role of the sex-determining region of the Y chromosome (SRY) in the etiology of 46,XX true hermaphroditism. Hum Genet 88: 411–416.CrossRefGoogle Scholar
  47. 47.
    Ortenberg J, Oddoux C, Craver R, et al, 2002 SRY gene expression in the ovotestes of XX true hermaphrodites. J Urol 167:1828–1831.CrossRefGoogle Scholar
  48. 48.
    de la Chapelle A, 1981 The etiology of maleness in XX men. Hum Genet 58: 105–116.CrossRefGoogle Scholar
  49. 49.
    López M, Torres L, Méndez JP, et al, 1995 Clinical traits and molecular findings in 46,XX males. Clin Genet 48: 29–34.CrossRefGoogle Scholar
  50. 50.
    Vorona E, Zitzmann M, Gromoll J, Schüring AN, Nieschlag E, 2007 Clinical, endocrinological and epigenetic features of the 46,XX male syndrome, compared with 47,XXY Klinefelter patients. J Clin Endocrinol Metab 92: 3458–3465.CrossRefGoogle Scholar
  51. 51.
    Abbas N, McElreavey K, Leconiat M, et al, 1993 Familial case of 46,XX male and 46,XX true hermaphrodite associated with a paternal-derived SRY-bearing X chromosome. C R Acad Sci III 316: 375–383.PubMedGoogle Scholar
  52. 52.
    Ergun-Longmire B, Vinci G, Alonso L, et al, 2005 Clinical, hormonal and cytogenetic evaluation of 46,XX males and review of the literature. J Pediatr Endocrinol Metab 18: 739–748.CrossRefGoogle Scholar
  53. 53.
    Huang B, Wang S, Ning Y, Lamb AN, Bartley J, 1999 Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 87: 349–353.CrossRefGoogle Scholar
  54. 54.
    Seeherunvong T, Perera EM, Bao Y, et al, 2004 46,XX sex reversal with partial duplication of chromosome arm 22q. Am J Med Genet A 127: 149–151.CrossRefGoogle Scholar
  55. 55.
    Skordis NA, Stetka DG, MacGillivray MH, Greenfield SP, 1987 Familial 46,XX males coexisting with familial 46,XX true hermaphrodites in same pedigree. J Pediatr 110: 244–248CrossRefGoogle Scholar
  56. 56.
    Sarafoglou K, Ostrer H, 2000 Clinical review 111: familial sex reversal: a review. J Clin Endocrinol Metab 85: 483–493.CrossRefGoogle Scholar
  57. 57.
    Gore CA, 2010 Neuroendocrine targets of endocrine disruptors. Hormones (Athens) 9: 16–27.CrossRefGoogle Scholar
  58. 58.
    Migeon CJ, Wisniewski AB, 2003 Human sex differentiation and its abnormalities. Human sex differentiation and its abnormalities. Best Pract Res Clin Obstet Gynaecol 17: 1–18.CrossRefGoogle Scholar
  59. 59.
    Meyers CM, Boughman JA, Rivas M, Wilroy RS, Simpson JL, 1996 Gonadal (ovarian) dysgenesis in 46,XX individuals: frequency of the autosomal recessive form. Am J Med Genet 63: 518–524.CrossRefGoogle Scholar
  60. 60.
    Pallister PD, Opitz JM, 1979 The Perrault syndrome: autosomal recessive ovarian dysgenesis with facultative, non-sex-limited sensorineural deafness. Am J Med Genet 4: 239–246.CrossRefGoogle Scholar
  61. 61.
    Nishi Y, Hamamoto K, Kajiyama M, Kawamura I, 1988 The Perrault syndrome: clinical report and review. Am J Med Genet: 31: 623–629.CrossRefGoogle Scholar
  62. 62.
    Aittomäki K, Herva R, Stenman UH, et al, 1996 Clinical features of primary ovarian failure caused by a point mutation in the follicle-stimulating hormone receptor gene. J Clin Endocrinol Metab 81: 3722–3776.PubMedGoogle Scholar
  63. 63.
    Marozzi A, Manfredini E, Tibiletti MG, et al 2000 Molecular definition of Xq common-deleted region in patients affected by premature ovarian failure. Hum Genet 107: 304–311.CrossRefGoogle Scholar
  64. 64.
    Rossetti R, Di Pasquale E, Marozzi A, et al, 2009 BMP15 mutations associated with primary ovarian insufficiency cause a defective production of bioactive protein. Hum Mutat 30: 804–810.CrossRefGoogle Scholar
  65. 65.
    Murray A, Webb J, Grimley S, Conway G, Jacobs P, 1998 Studies of FRAXA and FRAXE in women with premature ovarian failure. J Med Genet 35: 637–640.CrossRefGoogle Scholar
  66. 66.
    Massad-Costa AM, da Silva ID, Affonso R, et al, 2007 Gene analysis in patients with premature ovarian failure or gonadal dysgenesis: a preliminary study. Maturitas 57: 399–404.CrossRefGoogle Scholar
  67. 67.
    Holland C, 2000 47,XXX in an adolescent with premature ovarian failure and autoimmune disease. J Pediatr Adolesc Gynecol 13: 93.CrossRefGoogle Scholar
  68. 68.
    Schlessinger D, Herrera L, Crisponi L, Mumm S, Percesepe A, Pellegrini M, 2002 Genes and translocations involved in POF. Am J Med Genet 111: 328–333.CrossRefGoogle Scholar
  69. 69.
    Dacou-Voutetakis C, Maniati-Christidi M, Dracopoulou-Vabouli M, 2001 Genetic aspects of congenital adrenal hyperplasia. J Pediatr Endocrinol Metab 14: Suppl 5: 1303–1308.PubMedGoogle Scholar
  70. 70.
    Krone N, Dhir V, Ivison HE, Arlt W, 2007 Congenital adrenal hyperplasia and P450 oxidoreductase deficiency. Clin Endocrinol (Oxf) 66: 162–172.CrossRefGoogle Scholar
  71. 71.
    Merke DP, Bornstein SR, 2005 Congenital adrenal hyperplasia. Lancet 365: 2125–2136.CrossRefGoogle Scholar
  72. 72.
    Tonetto-Fernandes V, Lemos-Marini SH, Kuperman H, Ribeiro-Neto LM, Verreschi IT, Kater CE, 2006 Serum 21-Deoxycortisol, 17-Hydroxyprogesterone, and 11-deoxycortisol in classic congenital adrenal hyperplasia: clinical and hormonal correlations and identification of patients with 11beta-hydroxylase deficiency among a large group with alleged 21-hydroxylase deficiency. J Clin Endocrinol Metab 91: 2179–2184.CrossRefGoogle Scholar
  73. 73.
    Moran C, Azziz R, Carmina E, et al, 2000 21-Hydro-xylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: a multicenter study. Am J Obstet Gynecol 183: 1468–1474.CrossRefGoogle Scholar
  74. 74.
    Dacou-Voutetakis C, Dracopoulou M, 1999 High incidence of molecular defects of the CYP21 gene in patients with premature adrenarche. J Clin Endocrinol Metab 84: 1570–1574.CrossRefGoogle Scholar
  75. 75.
    Dracopoulou-Vabouli M, Maniati-Christidi M, Dacou-Voutetakis C, 2001 The spectrum of molecular defects of the CYP21 gene in the Hellenic population: variable concordance between genotype and phenotype in the different forms of congenital adrenal hyperplasia. J Clin Endocrinol Metab 86: 2845–2848.PubMedGoogle Scholar
  76. 76.
    Joehrer K, Geley S, Strasser-Wozak EM, et al, 1997 CYP11B1 mutations causing non-classic adrenal hy-perplasia due to 11 beta-hydroxylase deficiency. Hum Mol Genet 6: 1829–1834.CrossRefGoogle Scholar
  77. 77.
    Scott RR, Miller WL, 2008 Genetic and Clinical Features of P450 Oxidoreductase Deficiency. Horm Res 69: 266–275.CrossRefGoogle Scholar
  78. 78.
    Arlt W, Walker EA, Draper N, et al, 2004 Congenital adrenal hyperplasia caused by mutant P450 oxidore-ductase and human androgen synthesis: analytical study. Lancet 363: 2128–2135.CrossRefGoogle Scholar
  79. 79.
    Mendonca BB, Leite MV, de Castro M, et al, 2002 Female pseudohermaphroditism caused by a novel homozygous missense mutation of the GR gene. J Clin Endocrinol Metab 87: 1805–1809.CrossRefGoogle Scholar
  80. 80.
    Charmandari E, Kino T, Ichijo T, Chrousos GP, 2008 Generalized Glucocorticoid Resistance: Clinical Aspects, Molecular Mechanisms and Implications of a Rare Genetic Disorder. J Clin Endocrinol Metab 93: 1563–1572.CrossRefGoogle Scholar
  81. 81.
    Payne AH, Hales DB, 2004 Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25: 947–970.CrossRefGoogle Scholar
  82. 82.
    Mullis PE, Yoshimura N, Kuhlmann B, Lippuner K, Jaeger P, Harada H, 1997 Aromatase deficiency in a female who is compound heterozygote for two new point mutations in the P450arom gene: impact of estrogens on hypergonadotropic hypogonadism, multicystic ovaries, and bone densitometry in childhood. J Clin Endocrinol Metab 82: 1739–1745.PubMedGoogle Scholar
  83. 83.
    Belgorosky A, Pepe C, Marino R, et al, 2003 Hypotha-lamic-pituitary-ovarian axis during infancy, early and late prepuberty in an aromatase-deficient girl who is a compound heterozygote for two new point mutations of the CYP19 gene. J Clin Endocrinol Metab 88: 5127–5131.CrossRefGoogle Scholar
  84. 84.
    Lin L, Ercan O, Raza J, et al, 2007 Variable phenotypes associated with aromatase (CYP19) insufficiency in humans. J Clin Endocrinol Metab 92: 982–990.CrossRefGoogle Scholar
  85. 85.
    Masi L, Becherini L, Gennari L, et al, 2001 Polymorphism of the aromatase gene in postmenopausal Italian women: distribution and correlation with bone mass and fracture risk. J Clin Endocrinol Metab 86: 2263–2269.PubMedGoogle Scholar
  86. 86.
    Petry CJ, Ong KK, Michelmore KF, et al, 2005 Association of aromatase (CYP 19) gene variation with features of hyperandrogenism in two populations of young women. Hum Reprod 20: 1837–1843.CrossRefGoogle Scholar
  87. 87.
    Kirk JMW, Perry LA, Shand WS, Kirby RS, Besser GM, Savage MO, 1990 Female pseudohermaphroditism due to a maternal adrenocortical tumor. J Clin Endocrinol Metab 70: 1280–1284.CrossRefGoogle Scholar
  88. 88.
    Vauthier-Brouzes D, Vanna Lim-You K, Sebagh E, Lefebvre G, Darbois Y, 1997 Krukenberg tumor during pregnancy with maternal and fetal virilization: a difficult diagnosis. A case report. J Gynecol Obstet Biol Reprod (Paris) 26: 831–833.Google Scholar
  89. 89.
    Mazza V, Di Monte I, Ceccarelli PL, et al, 2002 Prenatal diagnosis of female pseudohermaphroditism associated with bilateral luteoma of pregnancy: case report. Hum Reprod 17: 821–824.CrossRefGoogle Scholar
  90. 90.
    Kai H, Nose O, Iida Y, Ono J, Harada T, Yabuuchi H, 1979 Female pseudohermaphroditism caused by maternal congenital adrenal hyperplasia. J Pediatr 95: 418–420.CrossRefGoogle Scholar
  91. 91.
    Lo JC, Schwitzgebel VM, Tyrrell JB, et al, 1999 Normal female infants born of mothers with classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 84: 930–936.PubMedGoogle Scholar
  92. 92.
    Morcel K, Camborieux L; Programme de Recherches sur les Aplasies Müllıriennes, Guerrier D, 2007 Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome. Orphanet J Rare Dis 2: 13.CrossRefGoogle Scholar
  93. 93.
    Achermann JC, Hughes IA, 2008 Disorders of sex development. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR (eds) Williams Textbook of Endocrinology 11th edition, Philadelphia; pp, 783–848.Google Scholar

Copyright information

© Hellenic Endocrine Society 2010

Authors and Affiliations

  • Eleni Kousta
    • 1
  • Asteroula Papathanasiou
    • 1
  • Nicos Skordis
    • 2
  1. 1.Department of Pediatric Endocrinology“P. & A. Kyriakou” Children’s HospitalAthensGreece
  2. 2.Pediatric Endocrine UnitDepartment of PediatricsNicosiaCyprus

Personalised recommendations