What Have We Learned from Expedition III and EPOCH Trials? Perspective of the CTAD Task Force

  • P. S. AisenEmail author
  • E. Siemers
  • D. Michelson
  • S. Salloway
  • C. Sampaio
  • M. C. Carrillo
  • R. Sperling
  • R. Doody
  • P. Scheltens
  • R. Bateman
  • M. Weiner
  • B. Vellas
  • EU/US/CTAD Task Force members
CTAD Task Force Paper


Although the results were disappointing from two recent clinical trials of amyloid-targeting drugs in mild-to-moderate AD, the trials provided information that will be important for future studies, according to the EU-US CTAD Task Force, which met in November 2017 to discuss the EXPEDITION3 and EPOCH trials. These trials tested two of the predominant drug development strategies for AD: amyloid immunotherapy and BACE inhibition in populations largely composed of mild AD dementia patients. The results of these trials support the emerging consensus that effective amyloid-targeted treatment will require intervention in early, even pre-symptomatic stages of the disease. Further, the Task Force suggested that a refinement of the amyloid hypothesis may be needed and that other hypotheses should be more fully explored. In addition, they called for improved biomarkers and other outcome assessments to detect the earliest changes in the development of AD.

Key words

Alzheimer’s disease therapeutic trials 


  1. 1.
    Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, et al. Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nat Neurosci. 2002;5(5):452–7.CrossRefPubMedGoogle Scholar
  2. 2.
    DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2001;98(15):8850–5.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM. Brain to plasma amyloid-beta efflux: a measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science. 2002;295(5563):2264–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Raghavan N, Samtani MN, Farnum M, Yang E, Novak G, Grundman M, et al. The ADAS-Cog revisited: novel composite scales based on ADAS-Cog to improve efficiency in MCI and early AD trials. Alzheimers Dement. 2013;9(1 Suppl):S21-31.Google Scholar
  5. 5.
    Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64.CrossRefPubMedGoogle Scholar
  6. 6.
    Galasko D, Bennett D, Sano M, Ernesto C, Thomas R, Grundman M, et al. An inventory to assess activities of daily living for clinical trials in Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord. 1997;11 Suppl 2:S33-9.Google Scholar
  7. 7.
    Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):311–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Liu-Seifert H, Case MG, Andersen SW, Holdridge KC, Aisen PS, Kollack-Walker S, et al. Delayed-start analyses in the Phase 3 solanezumab Expedition3 study in mild Alzheimer’s disease. J Prev Alz Dis. 2018;5(1):8–14.Google Scholar
  9. 9.
    Mintun MA, Devous MD, Lu M, Pontecorvo MJ, Joshi AD, Southekal S, et al. PET biomarkers in the Expedition 3 trial of patients with mild AD. Alzheimers Dement. 2017;13(7 Suppl):P1452.CrossRefGoogle Scholar
  10. 10.
    Aisen P, Touchon J, Amariglio R, Andrieu S, Bateman R, Breitner J, et al. EU/US/CTAD Task Force: Lessons Learned from Recent and Current Alzheimer’s Prevention Trials. J Prev Alzheimers Dis. 2017;4(2):116–24.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Buckley RF, Sparks KP, Papp KV, Dekhtyar M, Martin C, Burnham S, et al. Computerized Cognitive Testing for Use in Clinical Trials: A Comparison of the NIH Toolbox and Cogstate C3 Batteries. J Prev Alzheimers Dis. 2017;4(1):3–11.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Mielke MM, Hagen CE, Wennberg AMV, Airey DC, Savica R, Knopman DS, et al. Association of Plasma Total Tau Level With Cognitive Decline and Risk of Mild Cognitive Impairment or Dementia in the Mayo Clinic Study on Aging. JAMA Neurol. 2017;74(9):1073–80.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kennedy ME, Stamford AW, Chen X, Cox K, Cumming JN, Dockendorf MF, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS beta-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med. 2016;8(363):363ra150.CrossRefGoogle Scholar
  14. 14.
    Chang WP, Huang X, Downs D, Cirrito JR, Koelsch G, Holtzman DM, et al. Beta-secretase inhibitor GRL-8234 rescues age-related cognitive decline in APP transgenic mice. FASEB J. 2011;25(2):775–84.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595–608.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease: implications for prevention trials. Neuron. 2014;84(3):608–22.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Johnson KA, Schultz A, Betensky RA, Becker JA, Sepulcre J, Rentz D, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol. 2016;79(1):110–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Tomaszewski S, Gauthier S, Wimo A, Rosa-Neto P. Combination Therapy of Anti-Tau and Anti-Amyloid Drugs for Disease Modification in Early-stage Alzheimer’s Disease: Socio-economic Considerations Modeled on Treatments for Tuberculosis, HIV/AIDS and Breast Cancer. J Prev Alzheimers Dis. 2016;3(3):164–72.PubMedGoogle Scholar
  19. 19.
    Alzheimer’s Association Calcium Hypothesis W. Calcium Hypothesis of Alzheimer’s disease and brain aging: A framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement. 2017;13(2):178–82 e17.CrossRefGoogle Scholar
  20. 20.
    Goetzl EJ, Miller BL. Multicellular hypothesis for the pathogenesis of Alzheimer’s disease. FASEB J. 2017;31(5):1792–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Maccioni RB, Farias G, Morales I, Navarrete L. The revitalized tau hypothesis on Alzheimer’s disease. Arch Med Res. 2010;41(3):226–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Cavedo E, Lista S, Khachaturian Z, Aisen P, Amouyel P, Herholz K, et al. The Road Ahead to Cure Alzheimer’s Disease: Development of Biological Markers and Neuroimaging Methods for Prevention Trials Across all Stages and Target Populations. J Prev Alzheimers Dis. 2014;1(3):181–202.PubMedPubMedCentralGoogle Scholar

Copyright information

© Serdi and Springer Nature Switzerland AG 2018

Authors and Affiliations

  • P. S. Aisen
    • 1
    • 13
    Email author
  • E. Siemers
    • 2
  • D. Michelson
    • 3
  • S. Salloway
    • 4
  • C. Sampaio
    • 5
  • M. C. Carrillo
    • 6
  • R. Sperling
    • 7
  • R. Doody
    • 8
  • P. Scheltens
    • 9
  • R. Bateman
    • 10
  • M. Weiner
    • 11
  • B. Vellas
    • 12
  • EU/US/CTAD Task Force members
  1. 1.Alzheimer’s Therapeutic Research Institute (ATRI), Keck School of MedicineUniversity of Southern CaliforniaSan DiegoUSA
  2. 2.Eli Lilly and CompanyIndianapolisUSA
  3. 3.Merck, Inc.KenilworthUSA
  4. 4.The Warren Alpert Medical School of Brown UniversityProvidenceUSA
  5. 5.CHDI FoundationPrincetonUSA
  6. 6.Alzheimer’s AssociationChicagoUSA
  7. 7.Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  8. 8.F. Hoffmann-LaRoche Ltd.BaselSwitzerland
  9. 9.VU University Medical CenterAmsterdamThe Netherlands
  10. 10.Washington University School of MedicineSt. LouisUSA
  11. 11.University of CaliforniaSan FranciscoUSA
  12. 12.Gerontopole, INSERM U1027, Alzheimer’s Disease Research and Clinical CenterToulouse University HospitalToulouseFrance
  13. 13.University of Southern California Alzheimer’s Therapeutic Research InstituteSan DiegoUSA

Personalised recommendations