Increased Functional Connectivity After Listening to Favored Music in Adults With Alzheimer Dementia

  • J. B. King
  • K. G. Jones
  • E. Goldberg
  • M. Rollins
  • K. MacNamee
  • C. Moffit
  • S. R. Naidu
  • M. A. Ferguson
  • E. Garcia-Leavitt
  • J. Amaro
  • K. R. Breitenbach
  • J. M. Watson
  • R. K. Gurgel
  • Jeffrey S. AndersonEmail author
  • N. L. Foster
Original Research



Personalized music programs have been proposed as an adjunct therapy for patients with Alzheimer disease related dementia, and multicenter trials have now demonstrated improvements in agitation, anxiety, and behavioral symptoms. Underlying neurophysiological mechanisms for these effects remain unclear.


We examined 17 individuals with a clinical diagnosis of Alzheimer disease related dementia using functional MRI following a training period in a personalized music listening program.


We find that participants listening to preferred music show specific activation of the supplementary motor area, a region that has been associated with memory for familiar music that is typically spared in early Alzheimer disease. We also find widespread increases in functional connectivity in corticocortical and corticocerebellar networks following presentation of preferred musical stimuli, suggesting a transient effect on brain function.


Findings support a mechanism whereby attentional network activation in the brain’s salience network may lead to improvements in brain network synchronization.

Key words

Personalized music dementia supplementary motor area fMRI functional connectivity 


  1. 1.
    Gerdner LA. Individualized music intervention protocol. J Gerontol Nurs. 1999;25:10–6.CrossRefGoogle Scholar
  2. 2.
    Gerdner LA, Schoenfelder DP. Evidence-based guideline. Individualized music for elders with dementia. J Gerontol Nurs. 2010;36:7–15.Google Scholar
  3. 3.
    Gerdner LA. Effects of individualized versus classical «relaxation» music on the frequency of agitation in elderly persons with Alzheimer’s disease and related disorders. Int Psychogeriatr. 2000;12:49–65.CrossRefGoogle Scholar
  4. 4.
    Sakamoto M, Ando H, Tsutou A. Comparing the effects of different individualized music interventions for elderly individuals with severe dementia. Int Psychogeriatr. 2013;25:775–84.CrossRefGoogle Scholar
  5. 5.
    Cooke M, Moyle W, Shum D, Harrison S, Murfield J. A randomized controlled trial exploring the effect of music on quality of life and depression in older people with dementia. J Health Psychol. 2010;15:765–76.CrossRefGoogle Scholar
  6. 6.
    Guetin S, Portet F, Picot MC, Pommie C, Messaoudi M, Djabelkir L, et al. Effect of music therapy on anxiety and depression in patients with Alzheimer’s type dementia: randomised, controlled study. Dement Geriatr Cogn Disord. 2009;28:36–46.CrossRefGoogle Scholar
  7. 7.
    Gallego MG, Garcia JG. Music therapy and Alzheimer’s disease: Cognitive, psychological, and behavioral effects. Neurologia. 2017;32:300–8.CrossRefGoogle Scholar
  8. 8.
    Sung HC, Chang AM, Lee WL. A preferred music listening intervention to reduce anxiety in older adults with dementia in nursing homes. J Clin Nurs. 2010;19:1056–64.CrossRefGoogle Scholar
  9. 9.
    Ueda T, Suzukamo Y, Sato M, Izumi S. Effects of music therapy on behavioral and psychological symptoms of dementia: a systematic review and metaanalysis. Ageing Res Rev. 2013;12:628–41.CrossRefGoogle Scholar
  10. 10.
    Ridder HM, Stige B, Qvale LG, Gold C. Individual music therapy for agitation in dementia: an exploratory randomized controlled trial. Aging Ment Health. 2013;17:667–78.CrossRefGoogle Scholar
  11. 11.
    Sung HC, Chang AM. Use of preferred music to decrease agitated behaviours in older people with dementia: a review of the literature. J Clin Nurs. 2005;14:1133–40.CrossRefGoogle Scholar
  12. 12.
    Raglio A, Bellelli G, Traficante D, Gianotti M, Ubezio MC, Villani D, et al. Efficacy of music therapy in the treatment of behavioral and psychiatric symptoms of dementia. Alzheimer Dis Assoc Disord. 2008;22:158–62.CrossRefGoogle Scholar
  13. 13.
    Raglio A, Bellandi D, Baiardi P, Gianotti M, Ubezio MC, Zanacchi E, et al. Effect of Active Music Therapy and Individualized Listening to Music on Dementia: A Multicenter Randomized Controlled Trial. J Am Geriatr Soc. 2015;63:1534–9.CrossRefGoogle Scholar
  14. 14.
    van der Steen JT, van Soest-Poortvliet MC, van der Wouden JC, Bruinsma MS, Scholten RJ, Vink AC. Music-based therapeutic interventions for people with dementia. Cochrane Database Syst Rev. 2017;5:CD003477.Google Scholar
  15. 15.
    Thomas KS, Baier R, Kosar C, Ogarek J, Trepman A, Mor V. Individualized Music Program is Associated with Improved Outcomes for U.S. Nursing Home Residents with Dementia. Am J Geriatr Psychiatry. 2017;25:931–8.CrossRefGoogle Scholar
  16. 16.
    Cuddy LL, Duffin J. Music, memory, and Alzheimer’s disease: is music recognition spared in dementia, and how can it be assessed? Med Hypotheses. 2005;64:229–35.CrossRefGoogle Scholar
  17. 17.
    Samson S, Dellacherie D, Platel H. Emotional power of music in patients with memory disorders: clinical implications of cognitive neuroscience. Ann N Y Acad Sci. 2009;1169:245–55.CrossRefGoogle Scholar
  18. 18.
    Janata P. The neural architecture of music-evoked autobiographical memories. Cereb Cortex. 2009;19:2579–94.CrossRefGoogle Scholar
  19. 19.
    Pereira CS, Teixeira J, Figueiredo P, Xavier J, Castro SL, Brattico E. Music and emotions in the brain: familiarity matters. PLoS One. 2011;6:e27241.CrossRefGoogle Scholar
  20. 20.
    Eschrich S, Munte TF, Altenmuller EO. Unforgettable film music: the role of emotion in episodic long-term memory for music. BMC Neurosci. 2008;9:48.CrossRefGoogle Scholar
  21. 21.
    Hall GR, Buckwalter KC. Progressively lowered stress threshold: a conceptual model for care of adults with Alzheimer’s disease. Arch Psychiatr Nurs. 1987;1:399–406.Google Scholar
  22. 22.
    Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature neuroscience. 2011;14:257–62.CrossRefGoogle Scholar
  23. 23.
    Gates GA, Anderson ML, Feeney MP, McCurry SM, Larson EB. Central auditory dysfunction in older persons with memory impairment or Alzheimer dementia. Arch Otolaryngol Head Neck Surg. 2008;134:771–7.CrossRefGoogle Scholar
  24. 24.
    Jerger J, Hayes D. Diagnostic speech audiometry. Arch Otolaryngol. 1977;103:216–22.CrossRefGoogle Scholar
  25. 25.
    Fifer RC, Jerger JF, Berlin CI, Tobey EA, Campbell JC. Development of a dichotic sentence identification test for hearing-impaired adults. Ear Hear. 1983;4:300–5.CrossRefGoogle Scholar
  26. 26.
    Musiek FE, Gollegly KM, Kibbe KS, Verkest-Lenz SB. Proposed screening test for central auditory disorders: follow-up on the dichotic digits test. Am J Otol. 1991;12:109–13.Google Scholar
  27. 27.
    Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–94.Google Scholar
  28. 28.
    Anderson JS, Druzgal TJ, Lopez-Larson M, Jeong EK, Desai K, Yurgelun-Todd D. Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum Brain Mapp. 2011;32:919–34.CrossRefGoogle Scholar
  29. 29.
    Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–54.CrossRefGoogle Scholar
  30. 30.
    Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.CrossRefGoogle Scholar
  31. 31.
    Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.CrossRefGoogle Scholar
  32. 32.
    Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE. Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cereb Cortex. 2016;26:288–303.CrossRefGoogle Scholar
  33. 33.
    Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.CrossRefGoogle Scholar
  34. 34.
    Jacobsen JH, Stelzer J, Fritz TH, Chetelat G, La Joie R, Turner R. Why musical memory can be preserved in advanced Alzheimer’s disease. Brain. 2015;138:2438–50.CrossRefGoogle Scholar
  35. 35.
    Groussard M, La Joie R, Rauchs G, Landeau B, Chetelat G, Viader F, et al. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus. PLoS One. 2010;5.Google Scholar
  36. 36.
    Hsieh S, Hornberger M, Piguet O, Hodges JR. Neural basis of music knowledge: evidence from the dementias. Brain. 2011;134:2523–34.CrossRefGoogle Scholar
  37. 37.
    Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.CrossRefGoogle Scholar
  38. 38.
    Cooper JC, Knutson B. Valence and salience contribute to nucleus accumbens activation. Neuroimage. 2008;39:538–47.CrossRefGoogle Scholar
  39. 39.
    Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev. 1998;28:309–69.CrossRefGoogle Scholar
  40. 40.
    Salimpoor VN, van den Bosch I, Kovacevic N, McIntosh AR, Dagher A, Zatorre RJ. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science. 2013;340:216–9.CrossRefGoogle Scholar
  41. 41.
    Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 2004;101:4637–42.CrossRefGoogle Scholar
  42. 42.
    Adriaanse SM, Binnewijzend MA, Ossenkoppele R, Tijms BM, van der Flier WM, Koene T, et al. Widespread disruption of functional brain organization in early-onset Alzheimer’s disease. PLoS One. 2014;9:e102995.CrossRefGoogle Scholar
  43. 43.
    Adriaanse SM, Sanz-Arigita EJ, Binnewijzend MA, Ossenkoppele R, Tolboom N, van Assema DM, et al. Amyloid and its association with default network integrity in Alzheimer’s disease. Hum Brain Mapp. 2014;35:779–91.CrossRefGoogle Scholar
  44. 44.
    Rombouts SA, Damoiseaux JS, Goekoop R, Barkhof F, Scheltens P, Smith SM, et al. Model-free group analysis shows altered BOLD FMRI networks in dementia. Hum Brain Mapp. 2009;30:256–66.CrossRefGoogle Scholar
  45. 45.
    Song J, Qin W, Liu Y, Duan Y, Liu J, He X, et al. Aberrant functional organization within and between resting-state networks in AD. PLoS One. 2013;8:e63727.CrossRefGoogle Scholar
  46. 46.
    Wang L, Zang Y, He Y, Liang M, Zhang X, Tian L, et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage. 2006;31:496–504.CrossRefGoogle Scholar
  47. 47.
    Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 2010;68:815–34.CrossRefGoogle Scholar
  48. 48.
    Sheline YI, Raichle ME. Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry. 2013;74:340–7.CrossRefGoogle Scholar
  49. 49.
    Rossato-Bennett M. Alive Inside. Projector Media; 2014.Google Scholar

Copyright information

© Serdi Edition 2018

Authors and Affiliations

  • J. B. King
    • 1
    • 2
  • K. G. Jones
    • 1
  • E. Goldberg
    • 3
  • M. Rollins
    • 2
  • K. MacNamee
    • 4
  • C. Moffit
    • 4
  • S. R. Naidu
    • 5
  • M. A. Ferguson
    • 6
  • E. Garcia-Leavitt
    • 7
  • J. Amaro
    • 7
  • K. R. Breitenbach
    • 8
  • J. M. Watson
    • 4
    • 9
  • R. K. Gurgel
    • 5
    • 10
  • Jeffrey S. Anderson
    • 1
    • 2
    • 11
    • 13
    Email author
  • N. L. Foster
    • 7
    • 12
  1. 1.Interdepartmental Program in NeuroscienceUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Radiology and Imaging SciencesUniversity of UtahSalt Lake CityUSA
  3. 3.Jewish Family Services of UtahSalt Lake CityUSA
  4. 4.Department of PsychologyUniversity of UtahSalt Lake CityUSA
  5. 5.Department of Communication Sciences and DisordersUniversity of UtahSalt Lake CityUSA
  6. 6.Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of NeurologyHarvard Medical School and Beth Israel Deaconess Medical CenterBostonUSA
  7. 7.Center for Alzheimer Care, Imaging, and ResearchUniversity of UtahSalt Lake CityUSA
  8. 8.Genetic Science Learning CenterUniversity of UtahSalt Lake CityUSA
  9. 9.Department of PsychologyUniversity of Colorado DenverDenverUSA
  10. 10.Department of OtolaryngologyUniversity of UtahSalt Lake CityUSA
  11. 11.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  12. 12.Department of NeurologyUniversity of UtahSalt Lake CityUSA
  13. 13.1A71 School of MedicineSalt Lake CityUSA

Personalised recommendations