From the equations of motion to the canonical commutation relations

Summary

The problem of whether or not the equations of motion of a quantum system determine the commutation relations was posed by E. P. Wigner in 1950. A similar problem (known as “The Inverse Problem in the Calculus of Variations”) was posed in a classical setting as back as in 1887 by H. Helmoltz and has received great attention also in recent times. The aim of this paper is to discuss how these two apparently unrelated problems can actually be discussed in a somewhat unified framework. After reviewing briefly the Inverse Problem and the existence of alternative structures for classical systems, we discuss the geometric structures that are intrinsically present in Quantum Mechanics, starting from finite-level systems and then moving to a more general setting by using the Weyl-Wigner approach, showing how this approach can accommodate in an almost natural way the existence of alternative structures in Quantum Mechanics as well.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Abraham R. and Marsden J. E., Foundations of Mechanics, 2nd edition, (Benjamin/Cummings Reading) 1978.

    Google Scholar 

  2. [2]

    Ahlfors L. V., Complex Analysis (McGraw-Hill, New York) 1953.

    Google Scholar 

  3. [3]

    Aizenman M., Gallavotti G., Goldstein S. and Lebowitz J. L., Stability and Equilibrium. States of Infinite Classical Systems, Commun. Math. Phys., 48 (1976) 1.

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    Arnol’d V. I., Mathematical Methods of Classical Mechanics (Springer, Berlin and New York) 1989.

    Google Scholar 

  5. [5]

    Arnol’d V. I., Ordinary Differential Equations (Springer, Berlin and New York) 1991.

    Google Scholar 

  6. [6]

    Ashtekhar A. and Schilling T. A., Geometrical Formulation of Quantum, Mechanics, in On Einstein’s Path (Springer, Berlin and New York) 1999.

    Google Scholar 

  7. [7]

    Bacry H., Group-Theoretical Analysis of Elementary Particles in an External Electromagnetic Field, Nuovo Cimento A, 70 (1970) 289.

    ADS  Article  Google Scholar 

  8. [8]

    Baez J. C., Segal I. E. and Zhou Z., Introduction to Algebraic and Constructive Quantum. Field Theory (Princeton University Press, Princeton) 1992.

    Google Scholar 

  9. [9]

    Balachandran A. P., Marmo G., Mukunda N., Nilsson J. S., Simoni A., Sudarahan E. C. G. and Zaccaria F., Unified Geometrical Approach, to Relativistic Particle Dynamics, J. Math. Phys., 25 (1984) 167.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  10. [10]

    Balachandran A. P., Marmo G. and Stern A., A Lagrangian Approach, to the NoInteraction Theorem., Nuovo Cimento A, 11 (1982) 69.

    Google Scholar 

  11. [11]

    Bargmann V., On Unitary Ray Representations of Continuous Groups, Ann. Math., 59 (1954) 1.

    MathSciNet  MATH  Article  Google Scholar 

  12. [12]

    Basart H., Flato M., Lichnerowicz A. and Sternheimer D., Deformation Theory Applied to Quantization and Statistical Mechanics, Lett. Math. Phys., 8 (1984) 483.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. [13]

    Basart H. and Lichnerowicz A., Conformal Symplectic Geometry, Deformations, Rigidity and Geometrical (KMS) Conditions, Lett. Math. Phys., 10 (1985) 167.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    Beckers J., Debergh N., Cariñena J. F. and Marmo G., Non-Hermitian Oscillator-Like Hamiltonians and λ-Coherent States Revisited, Mod. Phys. Lett. A, 16 (2001) 91.

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    Bender C. M., Making Sense of Non-Hermitian Hamiltonians, Rep. Prog. Phys., 70 (2007) 947.

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    Benenti S., Chanu C. and Rastelli G., Remarks on the Connection Between, the Additive Separation of the Hamilton-Jacobi. Equation and the Multiplicative Separability of the Schrödinger Equation. I. The Completeness and Robertson Condition, J. Math. Phys., 43 (2002) 5183.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. [17]

    Benenti S., Chanu C. and Rastelli G., Remarks on the Connection Between, the Additive Separation of the Hamilton-Jacobi. Equation and the Multiplicative Separability of the Schrodinger Equation. II. First Integrals and Symmetry Operators, J. Math. Phys., 43 (2002) 5223.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. [18]

    Benenti S., Chanu C. and Rastelli G., Variable Separation Theory for the Null Hamilton-Jacobi. Equation, J. Math. Phys., 46 (2005) 042901.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  19. [19]

    Bengsson I. and Zyczkovski K., Geometry of Quantum. States (Cambridge University Press, Cambridge) 2006.

    Google Scholar 

  20. [20]

    Benvegnù A., Sansonetto N. and Spera M., Remarks on Geometric Quantum. Mechanics, J. Geom. Phys., 51 (2004) 229.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. [21]

    Bergmann P., Introduction to the Theory of Relativity (Dover, New York) 1975.

    Google Scholar 

  22. [22]

    Birkhoff G. and Maclane S., A Survey of Modern. Algebra (McMillan New York) 1965.

    Google Scholar 

  23. [23]

    Blasiak P., Horzela A. and Kapuscik G., Alternative Hamiltonians and Weyl Quantization, J. Opt. Quantum. Semiclass., 5 (2003) S245.

    ADS  Article  Google Scholar 

  24. [24]

    Bongaarts P. J. M., Linear Fields According to I. E. Segal, in Mathematics of Contemporary Physics, edited by Streater R. F. (Academic Press New York) 1972.

    Google Scholar 

  25. [25]

    Boulware D. G. and Deser S., “Ambiguities” of Harmonic-Oscillator Commutation Relations, Nuovo Cimento, XXX (1963) 230.

    Google Scholar 

  26. [26]

    Bratteli O. and Robinson D. W., Operator Algebras and Quantum, Statistical Mechanics (Springer-Verlag, Berlin and New York) 1987.

    Google Scholar 

  27. [27]

    Brody D. C. and Hughston L. P., Geometric Quantum, Mechanics, J. Geom. Phys., 38 (2001) 19.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    Brown E., Bloch Electrons in a Uniform, Magnetic Field, Phys. Rev. A, 133 (1964) 1038.

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    Brown L. M. (editor), Feynman’s Thesis (World Scientific Singapore) 2005.

    Google Scholar 

  30. [30]

    Calogero F. and De Gasperis A., On the Quantization of Newton-Equivalent Hamiltonians, Am. J. Phys., 9 (2004) 1202.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  31. [31]

    Cariñena J. F., Clemente-Gallardo J. and Marmo G., Introduction to Quantum. Mechanics and the Quantum-Classical Transition, quant-ph/0707. 3539 (2007).

  32. [32]

    Cariñena J. F., Clemente-Gallardo J. and Marmo G., Geometrization of Quantum. Mechanics, Theor. Math. Phys., 152 (2007) 894.

    MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    Cariñena J. F., Grabowski J. and Marmo G., Quantum. Bi-Hamiltonian Systems, Int. J. Mod. Phys. A, 15 (2000) 4797.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    Cariñena J. F., Grabowski J. and Marmo G., Contractions Nijenhuis Tensors for General Algebraic Structures, J. Phys. A, 34 (2001) 3769.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. [35]

    Cariñena J. F., Ibort L. A., Marmo G. and Stern A., The Feynman, Problem, and the Inverse Problem, for Poisson Dynamics, Phys. Rep., 263 (1995) 153.

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    Cariñena J. F., Marmo G. and Rañada M. F., Non-Symplectic Symmetries and Bi-Hamiltonian Structures for the Rational Harm,onic Oscillator, J. Phys. A, 35 (2002) L679.

    ADS  MATH  Article  Google Scholar 

  37. [37]

    Cavallaro S., Morchio G. and Strocchi F., A Generalization of the Stone-von Neumann Theorem, of Non-Regular Representation of the CCR Algebra, Lett. Math. Phys., 47 (1999) 307.

    MathSciNet  MATH  Article  Google Scholar 

  38. [38]

    Chaturvedi S., Ercolessi E., Marmo G., Morandi G., Mukunda N. and Simon R., Wigner Distributions for Finite-Dimensional Quantum. Systems An. Algebraic Approach, Pramana-J. Phys., 65 (2005) 981.

    ADS  Article  Google Scholar 

  39. [39]

    Chaturvedi S., Ercolessi E., Marmo G., Morandi G., Mukunda N. and Simon R., Wigner-Weyl Correspondence in Quantum Mechanics for Continuous and Discrete Systems. A Dirac-inspired View, J. Phys. A, 39 (2006) 1405.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. [40]

    Chern S. S., Complex Manifolds without Potential Theory, 2nd edition (Springer-Verlag Berlin and New York) 1967.

    Google Scholar 

  41. [41]

    Choquet-Bruhat Y. and Morette-Dewitt C., Analysis, Manifolds and Physics, 2nd edition (North-Holland Amsterdam) 1982.

    Google Scholar 

  42. [42]

    Chrushinski D. and Marmo G., Remarks on the GNS Representation and the Geometry of Quantum States, Open, Syst. Inf. Dyn., 16 (2009) 157.

    MathSciNet  Article  Google Scholar 

  43. [43]

    Cirelli R., Manià A. and Pizzocchero L., A Functional Representation, for Non-commutative C* Algebras, Rev. Math. Phys., 6 (1994) 675.

    MathSciNet  MATH  Article  Google Scholar 

  44. [44]

    Clemente-Gallardo J. and Marmo G., The Space of Density States in Geometrical Quantum Mechanics, in Differential Geometric Methods in Mechanics and Field Theory, edited by Cantrijn F., Crampin M. and Langerock B. (Gent Academia Press Gent) 2007.

    Google Scholar 

  45. [45]

    Cook J. M., The Mathematics of Second Quantization, Trans. Am. Math. Soc., 74 (1953) 222.

    MathSciNet  MATH  Article  Google Scholar 

  46. [46]

    Currie D. G., Jordan T. F. and Sudarshan E. C. G., Relativistic Invariance and Hamiltonian, Theories of Interacting Particles, Rev. Mod. Phys., 35 (1963) 350.

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    Currie D. G. and Saletan E. J., q-Equivalent Particle Hamiltonians. I. The Classical One-Dimensional Case, J. Math. Phys., 7 (1966) 967.

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    Currie D. G. and Saletan E. J., Canonical Transformations and Quadratic Hamiltonians, Nuovo Cimento B, 9 (1972) 143.

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    Dana I. and Zak J., Adams Representation and Localization in a Magnetic Field, Phys. Rev. B, 28 (1983) 694.

    Article  Google Scholar 

  50. [50]

    Das A., Integrable Models (World Scientific, Singapore) 1989.

    Google Scholar 

  51. [51]

    D’avanzo A. and Marmo G., Reduction and Unfolding The Kepler Problem, Int. J. Geom. Meth. Mod. Phys., 2 (2004) 83.

    MathSciNet  MATH  Article  Google Scholar 

  52. [52]

    Defilippo S., Landi G., Marmo G. and Vllasi G., Tensor Fields Defining a Tangent Bundle Structure, Ann. Inst. Poincarè, 50 (1989) 205.

    MathSciNet  Google Scholar 

  53. [53]

    Defilippo S., Salerno M., Vilasi G. and Marmo G., Phase Manifold Geometry of Burgers Hierarchy, Lett. Nuovo Cimento, 37 (1983) 105.

    MathSciNet  Article  Google Scholar 

  54. [54]

    Defilippo S., Vilasi G., Marmo G. and Salerno M., A New Characterization of Completely Integrable Systems, Nuovo Cimento B, 83 (1984) 97.

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    Di Francesco P., Mathieu P. and Senechal D., Conformal Field Theory (Springer, Berlin) 1997.

    Google Scholar 

  56. [56]

    Dirac P. A. M., The Principles of Quantum. Mechanics (Oxford University Press Oxford) 1958 and 4th edition (1962).

    Google Scholar 

  57. [57]

    Dirac P. A. M., The Lagrangian in Quantum. Mechanics, Phys. Z. Sowjetunion, 3, Issue No. 1 (1933) 64.

    MATH  Google Scholar 

  58. [58]

    Douglas J., Solution of the Inverse Problem, of the Calculus of Variations, Trans. Am. Math. Soc., 50 (1941) 71.

    MathSciNet  MATH  Article  Google Scholar 

  59. [59]

    Dubin D. A., Hennings M. A. and Smith T. B., Mathematical Aspects of Weyl Quantization and Phase (World Scientific, Singapore) 2000.

    Google Scholar 

  60. [60]

    Dubrovin B. A., Giordano M., Marmo G. and Simoni A., Poisson Brackets on Presymplectic Manifolds, Int. J. Mod. Phys. A, 8 (1993) 3747.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  61. [61]

    Dubrovin B. A., Marmo G. and Simoni A., Alternative Hamiltonian Descriptions for Quantum, Systems, Mod. Phys. Lett. A, 5 (1990) 1229.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  62. [62]

    Dubrovin B. A. and Novikov S. P., Ground States of a Two-Dimensional Electron, in a Periodic Potential, Sov. Phys. JETP, 52 (1980) 511.

    ADS  Google Scholar 

  63. [63]

    Dyson F. J., Feynmans Proof of the Maxwell Equations, Am. J. Phys., 58 (1990) 209.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  64. [64]

    Einstein A., Zum Quantenzatz von Sommerfeld und Epstein, Verhandlungen Physikalischen Gesellshaft, 19 (1917) 82.

    Google Scholar 

  65. [65]

    Emch G. G., Mathematical and Conceptual Foundations of 20-th. Century Physics (North-Holland, Amsterdam) 1984.

    Google Scholar 

  66. [66]

    Ercolessi E., Ibort L. A., Marmo G. and Morandi G., Alternative Linear Structures for Classical and Quantum. Systems, Int. J. Mod. Phys. A, 22 (2007) 3039.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  67. [67]

    Ercolessi E., Marmo G. and Morandi G., Alternative Hamiltonian Descriptions and Statistical Mechanics, Int. J. Mod. Phys. A, 17 (2002) 3779.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  68. [68]

    Ercolessi E., Marmo G., Morandi G. and Mukunda N., Wigner Distributions in Quantum. Mechanics, J. Phys. Conf Ser., 87 (2007) 012010.

    Article  Google Scholar 

  69. [69]

    Esposito G., Marmo G. and Sudarshan G., From. Classical to Quantum. Mechanics (Cambridge University Press, New York) 2004.

    Google Scholar 

  70. [70]

    Facchi P., Gorini V., Marmo G., Pascazio S. and Sudarshan E. C. G., Quantum. Zeno Dynamics, Phys. Lett. A, 275 (2000) 12.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  71. [71]

    Fano U., Description of States in Quantum. Mechanics by Density Matrix and Operator-Techniques, Rev. Mod. Phys., 29 (1957) 74.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  72. [72]

    Ferrario C., Lovecchio G., Marmo G., Morandi G. and Rubano C., Separability of Completely-Integrable Dynamical Systems Admitting Alternative Lagrangian Descriptions, Lett. Math. Phys., 9 (1985) 140.

    ADS  MathSciNet  Article  Google Scholar 

  73. [73]

    Ferrario C., Lovecchio G., Marmo G., Morandi G. and Rubano C., A Separability Theorem, for Dynamical Systems Admitting Alternative Lagrangian Descriptions, J. Phys. A, 20 (1987) 3225.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  74. [74]

    Feynman R. P., Space-Time Approach, to Non-Relativistic Quantum. Mechanics, Rev. Mod. Phys., 20 (1948) 367.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  75. [75]

    Feynman R. P. and Hibbs A. R., Quantum. Mechancs and Path. Integrals (McGraw-Hill, New York) 1965.

    Google Scholar 

  76. [76]

    Florek W., Magnetic Translation Groups inn Dimensions, Rep. Math. Phys., 38 (1996) 235.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  77. [77]

    Folland G. B., Harmonic Analysis in Phase Space (Princeton University Press, Princeton) 1989.

    Google Scholar 

  78. [78]

    Frolicher A. and Nijenhuis A., Theory of Vector-Valued Differential Forms, Indag. Math., 18 (1956) 338.

    MATH  Article  Google Scholar 

  79. [79]

    Galindo A., Some Myriotic Paraboson Fields, Nuovo Cimento, XXX (1963) 235.

    ADS  MathSciNet  Article  Google Scholar 

  80. [80]

    Gel’fand I. M. and Dorfman I. YA., The Schouten Bracket and Hamiltonian Operators, Funct. Anal. Appl., 14 (1981) 223.

    MATH  Article  Google Scholar 

  81. [81]

    Gel’fand I. M. and Zakharevich I., On Local geometry of a Bihamiltonian Structure, in Gel’fand Mathematical Seminars Series, edited by Corwin L., Gel’fand I. M. and Lepowski J., Vol. I (Birkhauser Boston) 1993.

  82. [82]

    Geroch R., Mathematical Physics (University of Chicago Press, Chicago) 1985.

    Google Scholar 

  83. [83]

    Giordano M., Marmo G. and Rubano C., The Inverse Problem, in the Hamiltonian Formalism Integrability of Linear Vector Fields, Inverse Problems, 9 (1993) 443.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  84. [84]

    Giordano M., Marmo G., Simoni A. and Ventriglia F., Integrable and Super-Integrable Systems in Classical and Quantum. Mechanics, in Nonlinear Physics Theory and Experiment, edited by Ablowitz M. J., Boiti M., Pempinelli F. and Prinari B., Vol. II (World Scientific Singapore) 2003.

  85. [85]

    Glimm J. and Jaffe A., Quantum. Physics. A Functional Integral Point of View (Springer-Verlag, Berlin and New York) 1981.

    Google Scholar 

  86. [86]

    Grabowski J., Kus M. and Marmo G., Geometry of Quantum. Systems Density States and, Entanglement, J. Phys. A, 38 (2005) 10127.

    MathSciNet  MATH  Article  Google Scholar 

  87. [87]

    Grabowski J., Kus M. and Marmo G., Wigner’s Theorem, and the Geometry of Extreme Positive Maps, J. Phys. A, 42 (2009) 345301.

    MathSciNet  MATH  Article  Google Scholar 

  88. [88]

    Grabowski J., Landi G. and Vilasi G., Generalized, Reduction Procedure, Fortschr. Phys., 42 (1994) 393.

    MathSciNet  Article  Google Scholar 

  89. [89]

    Grabowski J. and Marmo G., Binary Operations in Classical and Quantum. Mechanics, in Classical and Quantum. Integrability, edited by Grabowski J. and Urbanski P., Vol. 59 (Banach Center Publ.) 2003, p. 163.

    MathSciNet  MATH  Article  Google Scholar 

  90. [90]

    Gracia-Bondia J. M., Lizzi F., Marmo G. and Vitale P., Infinitely Many Star-Products to Play With, J. High, Energy Phys., 4 (2002) 26.

    ADS  Article  Google Scholar 

  91. [91]

    Green H. S., A Generalized Method, of Field, Quantization, Phys. Rev., 90 (1953) 270.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  92. [92]

    Greenberg O. W. and Messiah A. M. L., Selection Rules for Parafields and the Absence of Para, Particles in Nature, Phys. Rev. B, 138 (1965) B1155.

    ADS  MathSciNet  Article  Google Scholar 

  93. [93]

    Groenewold A., On. the Principles of Elementary Quantum. Mechanics, Physica, 12 (1946) 405.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  94. [94]

    Grossmann A., Loupias G. and Stein E. M., An Algebra, of Pseudo-Differential Operators and Quantum. Mechanics in Phase Space, Ann. Inst. Fourier, Grenoble, 18 (1968) 2343.

    Google Scholar 

  95. [95]

    Haag R., Local Quantum. Physics. Fields, Particles, Algebras (Springer-Verlag, Berlin and New York) 1992.

    Google Scholar 

  96. [96]

    Haag R., Hugenholtz N. M. and Winnink M., On the Equilibrium, States in Quantum. Statistical Mechanics, Commun. Math. Phys., 5 (1967) 215.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  97. [97]

    Haag R. and Kastler D., An. Algebaric Approach, to Quantum, Field Theory, J. Math. Phys., 5 (1964) 884.

    Article  Google Scholar 

  98. [98]

    Havas O., The Range of Application of the Lagrangian Formalism, Suppl. Nuovo Cimento, 3 (1957) 363.

    MATH  Article  Google Scholar 

  99. [99]

    Helmoltz H., Ueber die Phisikalische Bedeutung des Prinzip der Klenisten Wirkung, Z. Reine Angew. Math., 100 (1887) 137.

    Google Scholar 

  100. [100]

    Henneaux M. and Shepley L. C., Lagrangians for Spherically Symmetric Potentials, J. Math. Phys., 23 (1982) 2101.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  101. [101]

    Hochschild G., On. the Cohomology Theory for Associative Algebras, Ann. Math., 47 (1946) 568.

    MathSciNet  MATH  Article  Google Scholar 

  102. [102]

    Hofstadter D. R., Energy Levels and Wavefunctions of Bloch. Electrons in Rational and Irrational Magnetic Fields, Phys. Rev. B, 14 (1976) 2239.

    ADS  Article  Google Scholar 

  103. [103]

    Hugenholtz N. M., States and Representations in Statistical Mechanics, in Mathematics of Contemporary Physics, edited by Streater R. F. (Academic Press New York) 1972.

    Google Scholar 

  104. [104]

    Husemoller D., Fibre Bundles, 3rd edition (Springer Berlin and New York) 1994.

    Google Scholar 

  105. [105]

    Huybrechts D., Complex Geometry (Springer, Berlin and New York) 2005.

    Google Scholar 

  106. [106]

    Ibort L. A., Deleon M. and Marmo G., Reduction of Jacobi Manifolds, J. Phys. A, 30 (1997) 2783.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  107. [107]

    Ibort L. A., Magri F. and Marmo G., Bi-Hamiltonian Structures and, Stöckel Separability, J. Geom. Phys., 33 (2000) 210.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  108. [108]

    Jordan P., Uber die Multiplikation Quantenmechanischer Grosser., Z. Phys., 87 (1934) 505.

    ADS  MATH  Article  Google Scholar 

  109. [109]

    Jordan P., von Neumann J. and Wigner E. P., On an Algebraic Generalization of the Quantum. Mechanical Formulism., Ann. Math., 35 (1934) 29.

    MathSciNet  MATH  Article  Google Scholar 

  110. [110]

    Ivadanoff L. P. and Baym G., Quantum. Statistical Mechanics (Benjamin Inc., New York) 1962.

    Google Scholar 

  111. [111]

    Kasner E. K., Differential Geometric Aspects of Dynamics (American Mathematical Society, New York) 1913.

    Google Scholar 

  112. [112]

    Kato T., Perturbation Theory for Linear Operators (Springer, Berlin and New York) 1995.

    Google Scholar 

  113. [113]

    Kirillov A. A., Elements of the Theory of Representations (Springer-Verlag, Berlin) 1976.

    Google Scholar 

  114. [114]

    Kirillov A. A., Merits and Demerits of the Orbit Method, Bull. Am. Math. Soc., 36 (1999) 433.

    MathSciNet  MATH  Article  Google Scholar 

  115. [115]

    Konstant B., Quantization and Unitary Representations Part I. Prequantization, in Leet. Notes Math. 170 (Springer-Verlag Berlin) 1970.

  116. [116]

    Krejcirik D., Bila H. and Znojil M., Closed Formula for the Metric in the Hilbert Space of a PT-Symmetric Model, J. Phys. A, 39 (2006) 10143.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  117. [117]

    Kubo R., Statistical Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems, J. Phys. Soc. Jpn., 12 (1957) 570.

    ADS  MathSciNet  Article  Google Scholar 

  118. [118]

    Lagrange J. L., Memoire sur la Theorie de la Variation des Elements des Planetes, Mem. Cl. Sci. Math. Phys. Ins. France (1808) 1–72.

    Google Scholar 

  119. [119]

    Landi G., Marmo G. and Vilasi G., An. Algebraic Approach, to Integrability, J. Group Theor. Phys., 3 (1994) 1.

    Google Scholar 

  120. [120]

    Landi G., Marmo G. and Vilasi G., Recursion Operators Meaning and Existence for Completely Integrable Systems, J. Math. Phys., 35 (1994) 808.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  121. [121]

    Langouche F., Roekaerts D. and Tirapegui E., Functional Integration and Semiclassical Expansions (Reidel, Boston) 1982.

    Google Scholar 

  122. [122]

    Lax P. D., Integrals of Nonlinear Equations and Solitary Waves, Commun. Pure Appl. Math., XXI (1968) 467.

    MathSciNet  MATH  Article  Google Scholar 

  123. [123]

    Lax P. D., Periodic Solutions of the KdV Equation, Commun Pure Appl. Math., XXVIII (1975) 141.

    MathSciNet  MATH  Google Scholar 

  124. [124]

    Lax P. D., Almost Periodic Solutions of the KdV Equation, Siam. Rev., 18 (1976) 351.

    MathSciNet  MATH  Article  Google Scholar 

  125. [125]

    Leonhardt U., Measuring the Quantum. State of Light (Cambridge University Press, New York) 1997.

    Google Scholar 

  126. [126]

    Lev B. L, Semenov A. A. and Usenko C. V., Scalar Charged Particle in Wigner-Moyal Phase Space. Constant Magnetic Field, J. Russian Laser Res., 23 (2002) 347.

    Article  Google Scholar 

  127. [127]

    Levi-Civita T., Fondamenti di Meccanica Relativistica (Zanichelli Bologna) 1928, pp. 48–53.

    Google Scholar 

  128. [128]

    Liang J. Q. and Morandi G., On the Extended Feynman Formula for the Harmonic Oscillator, Phys. Lett. A, 160 (1991) 9.

    ADS  MathSciNet  Article  Google Scholar 

  129. [129]

    Lichnerowicz A., Les Variétés de Jacobi, et Leurs Algébres de Lie Associées, J. Math. Pure Appl., 57 (1978) 453.

    MATH  Google Scholar 

  130. [130]

    Lopez C., Martinez E. and Ranada M. F., Dynamical Symmetries, Non-Cartan Symmetries and Superintegrability of the n-Dimensional Harmonic Oscillator, J. Phys. A: Math. Gen., 32 (1999) 1241.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  131. [131]

    Lopez-Pena R., Man’ko V. I. and Marmo G., Wigner’s Problem, for a Precessing Magnetic Dipole, Phys. Rev. A, 56 (1997) 1126.

    ADS  Article  Google Scholar 

  132. [132]

    Mackey G. W., Induced Representations of Groups and Quantum. Mechanics (Benjamin, New York) 1968.

    Google Scholar 

  133. [133]

    Mackey G. M., Mathematical Foundations of Quantum. Mechanics (Benjamin, New York) 1963 and (Dover, New York) 2004.

    Google Scholar 

  134. [134]

    Magri F., A Simple Model of the Integrable Hamiltonian Equation, J. Math. Phys., 19 (1978) 1156.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  135. [135]

    Mancusi D., Meccanica Quantistica sullo Spazio delle Fasi, Thesis, Napoli, 2003 (unpublished).

    Google Scholar 

  136. [136]

    Man’ko O. V., Man’ko V. I. and Marmo G., Alternative Commutation Relations, Star-Products and Tomography, J. Phys. A, 35 (2002) 699.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  137. [137]

    Man’ko O. V., Man’ko V. I. and Marmo G., Star-Product of Generalized Wigner-Weyl Symbols on. SU(2) Group, Deformations and Tomographic Probability Distribution, Phys. Scr., 62 (2000) 446.

    ADS  MathSciNet  Article  Google Scholar 

  138. [138]

    Man’ko V. I. and Marmo G., Probability Distributions and Hilbert Spaces Quantum, and Classical Systems, Phys. Scr., 60 (1999) 111.

    ADS  Article  Google Scholar 

  139. [139]

    Man’ko V. I. and Marmo G., Aspects of Nonlinear and Noncanonical Transformations in Quantum. Mechanics, Phys. Scr., 58 (1998) 224.

    ADS  Article  Google Scholar 

  140. [140]

    Man’ko V. I., Marmo G., Simoni A. and Ventriglia F., Tomograms in the Quantum-Classical Transition, Phys. Lett. A, 343 (2005) 251.

    ADS  MATH  Article  Google Scholar 

  141. [141]

    Man’ko V. I., Marmo G., Solimeno S. and Zaccaria F., Physical Nonlinear Aspects of Classical and Quantum. Q-Oscillators, Int. J. Mod. Phys. A, 8 (1993) 3577.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  142. [142]

    Man’ko V. I., Marmo G., Solimeno S. and Zaccaria F., Correlation Functions of Quantum. Q-Oscillators, Phys. Lett. A, 176 (1993) 173.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  143. [143]

    Man’ko V. I., Marmo G., Sudarshan E. C. G. and Zaccaria F., The Geometry of Density States, Positive Maps and Tomograms, in Symmetries in Science XI, edited by Gruber B., Marmo G. and Yoshinaga N. (Kluwer New York) 2004.

    Google Scholar 

  144. [144]

    Man’ko V. I., Marmo G., Sudarshan E. C. G. and Zaccaria F., Purification of Impure Density Operators and the Recovery of Entanglement, quant-ph/9910080 (1999).

    Google Scholar 

  145. [145]

    Man’ko V. I., Marmo G., Sudarshan E. C. G. and Zaccaria F., Inner Composition Law for Pure States as a Purificatin of Impure States, Phys. Lett. A, 273 (2000) 31.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  146. [146]

    Man’ko V. I., Marmo G., Sudarshan E. C. G. and Zaccaria F., Interference and Entanglement an. Intrisic Approach, Int. J. Theor. Phys., 40 (2002) 1525.

    Google Scholar 

  147. [147]

    Man’ko V. I., Marmo G., Sudarshan E. C. G. and Zaccaria F., Entanglement in, Probability Representation of Quantum. States and Tomographic Criterion, of Separability, J. Opt. B: Quantum, Semiclass. Opt., 6 (2004) 172.

    MathSciNet  Article  Google Scholar 

  148. [148]

    Man’ko V. I., Marmo G., Sudarshan E. C. G. and Zaccaria F., Differential geometry of Density States, Rep. Math. Phys., 55 (2005) 405.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  149. [149]

    Man’ko V. I., Marmo G., Vitale P. and Zaccaria F., A Generalization of the Jordan-Wigner Map Classical Versions and its q-Deformations, Int. J. Mod. Phys. A, 9 (1994) 5541.

    ADS  MATH  Article  Google Scholar 

  150. [150]

    Man’ko V. I., Marmo G., Zaccaria F. and Sudarshan E. C. G., Wigner’s Problem, and Alternative Commutation Relations for Quantum. Mechanics, Int. J. Mod. Phys. B, 11 (1996) 1281.

    ADS  Article  Google Scholar 

  151. [151]

    Marmo G., Equivalent Lagrangians and Quasi-Canonical Transformations, in Group Theoretical Methods in, Physics, edited by James A., Janssen T. and Boon M. (Springer-Verlag) 1976.

    Google Scholar 

  152. [152]

    Marmo G., Nijenhuis Operators in Classical Dynamics, in Seminar on. Group Theoretical Methods in Physics (USSR Academy of Sciences, Yurmala, Latvian SSR) 1985.

    Google Scholar 

  153. [153]

    Marmo G., The Quantum-Classical Transition for Systems with Alternative Hamiltonian Descriptions, in Proceedings of the IX Fall Workshop on. Geometry and Physics (Real Sociedad Matemática Española, Madrid) 2001.

    Google Scholar 

  154. [154]

    Marmo G., Alternative Commutation Relations and Quantum. Bi-Hamiltonian Systems, Acta, Appl. Math., 70 (2002) 161.

    MathSciNet  MATH  Google Scholar 

  155. [155]

    Marmo G., The Inverse Problem, for Quantum. Systems, in Applied Differential Geometry and Mechanics, edited by Sarlet W. and Cantrijn F. (Gent Academia Press Gent) 2003.

    Google Scholar 

  156. [156]

    Marmo G. and Morandi G., The Inverse Problem, with Symmetries and the Appearance of Cohomologies in Classical Lagrangian Dynamics, Rep. Math. Phys., 28 (1989) 389.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  157. [157]

    Marmo G. and Morandi G., Some Geometry and Topology, in Low-Dimensional Quantum Field Theories for Condensed-Matter Physicists, edited by Lundqvist S., Morandi G. and Yu Lu (World Scientific Singapore) 1995.

    Google Scholar 

  158. [158]

    Marmo G., Morandi G. and Mukunda N., A Geometrical Approach, to the Hamilton-Jacobi Form of Dynamics and its Generalizations, Riv. Nuovo Cimento, 13, N. 8 (1990) 1.

    MathSciNet  Article  Google Scholar 

  159. [159]

    Marmo G., Morandi G. and Rubano C., Symmetries in the Lagrangian and Hamiltonian Formalism. The Equivariant Inverse Problem, in Symmetries in Science III, edited by Gruber B. and Iachello E. (Plenum Press New York) 1983.

    Google Scholar 

  160. [160]

    Marmo G., Morandi G., Simoni A. and Ventriglia F., Alternative Structures and Bi-Hamiltonian Systems, J. Phys. A, 35 (2002) 8393.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  161. [161]

    Marmo G., Morandi G., Simoni A. and Sudarshan E. C. G., Quasi-Invariance and Central Extensions, Phys. Rev. D, 37 (1988) 2196.

    ADS  MathSciNet  Article  Google Scholar 

  162. [162]

    Marmo G., Mukunda N. and Sudarshan E. C. G., Relativistic Particle Dynamics-Lagrangian Proof of the No-Interaction Theorem., Phys. Rev. D, 30 (1984) 2110.

    ADS  MathSciNet  Article  Google Scholar 

  163. [163]

    Marmo G. and Rubano C., Alternative Lagrangians for a Charged Particle in a Magnetic Field, Phys. Lett. A, 119 (1987) 321.

    ADS  MathSciNet  Article  Google Scholar 

  164. [164]

    Marmo G. and Saletan E. J., Ambiguities in the Lagrangian and Hamiltonian Formalisms Transformation Properties, Nuovo Cimento B, 40 (1977) 67.

    ADS  MathSciNet  Article  Google Scholar 

  165. [165]

    Marmo G. and Saletan E. J., q-Equivalent Particle Hamiltonians. III. The Two-Dimensional Quantum. Oscillator, Hadronic J., 3 (1980) 1644.

    Google Scholar 

  166. [166]

    Marmo G., Saletan E. J., Schmid R. and Simoni A., Bi-Hamiltonian Dynamical Systems and the Quadratic-Hamiltonian Theorem, Nuovo Cimento B, 100 (1987) 297.

    MathSciNet  Google Scholar 

  167. [167]

    Marmo G., Saletan E. J., Simoni A. and Vitale B., Dynamical Systems (J. Wiley & Sons, New York) 1985.

    Google Scholar 

  168. [168]

    Marmo G., Scolarici G., Simoni A. and Ventriglia F., Alternative Hamiltonian Descriptions for Quantum. Systems, in Encuentro de Fisica Fundamental, edited by Alvarez-Estrada R. F., Dobado A., Fernandez L. A., Martin-Delgado M. A. and Munoz Sudupe A. (Aula Documental de Investigacion Madrid) 2005.

    Google Scholar 

  169. [169]

    Marmo G., Scolarici G., Simoni A. and Ventriglia F., Quantum Bi-Hamiltonian Systems, Alternative Structures and Bi-Unitary Transformations, Note Matematica, 23 (2004) 173.

    MathSciNet  MATH  Google Scholar 

  170. [170]

    Marmo G., Scolarici G., Simoni A. and Ventriglia F., The Quantum-Classical Transition the Fate of the Complex Structure, Int. J. Geom. Meth. Mod. Phys., 2 (2005) 1.

    MathSciNet  MATH  Article  Google Scholar 

  171. [171]

    Marmo G., Scolarici G., Simoni A. and Ventriglia F., Alternative Structures and Bi-Hamiltonian Systems on a Hilbert Space, J. Phys. A, 38 (2005) 3813.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  172. [172]

    Marmo G., Scolarici G., Simoni A. and Ventriglia F., Alternative Algebraic Structures from Bi-Hamiltonian Quantum Systems, Int. J. Geom. Meth. Mod. Phys., 2 (2005) 919.

    MathSciNet  MATH  Article  Google Scholar 

  173. [173]

    Marmo G., Scolarici G., Simoni A. and Ventriglia F., Classical and Quantum Systems Alternative Hamiltonian Descriptions, Theor. Math. Phys., 144 (2005) 1190.

    MathSciNet  MATH  Article  Google Scholar 

  174. [174]

    Marmo G., Simoni A. and Ventriglia F., Bi-Hamiltonian Quantum Systems and Weyl Quantization, Rep. Math. Phys., 48 (2001) 149.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  175. [175]

    Marmo G., Simoni A. and Ventriglia F., Quantum Systems Real Spectra and Non-Hermitian (Hamiltonian) Operators, Rep. Math. Phys., 51 (2003) 275.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  176. [176]

    Marmo G., Simoni A. and Ventriglia F., Bi-Hamiltonian Systems in the Quantum-Classical Transition, Rendic. Circolo Mat. Palermo, Ser. II, Suppl., 69 (2002) 19.

    Google Scholar 

  177. [177]

    Marmo G., Simoni A. and Ventriglia F., Quantum Systems and Alternative Unitary Descriptions, Int. J. Mod. Phys. A, 19 (2004) 2561.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  178. [178]

    Marmo G., Simoni A. and Ventriglia F., Geometrical Structures Emerging from. Quantum. Mechanics, in Groups, Geometry and Physics, edited by Gallardo J. C. and Martinez E. (Monografias de la Real Academia de Ciencias Zaragoza) 2006.

    Google Scholar 

  179. [179]

    Marmo G. and Vilasi G., When do Recursion Operators Generate New Conservation Laws?, Phys. Lett. B, 277 (1992) 137.

    ADS  MathSciNet  Article  Google Scholar 

  180. [180]

    Marmo G. and Vilasi G., Symplectic Structures and Quantum. Mechanics, Mod. Phys. Lett. B, 10 (1996) 545.

    ADS  MathSciNet  Article  Google Scholar 

  181. [181]

    Martin P. C. and Schwinger J., Theory of Many-Particle Systems. I, Phys. Rev., 115 (1959) 1342.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  182. [182]

    Mauceri G., The Weyl Transform, and Bounded Operators in, ℒP(ℝn), J. Funct. Anal., 39 (1980) 408.

    MATH  Article  Google Scholar 

  183. [183]

    Messiah A., Mecanique Quantique, Vol. I (Dunod Paris) 1958.

  184. [184]

    Morandi G., Quantum, Hall Effect (Bibliopolis, Naples) 1988.

    Google Scholar 

  185. [185]

    Morandi G., The Role of Topology in. Classical and Quantum. Physics (Springer-Verlag, Berlin and New York) 1992.

    Google Scholar 

  186. [186]

    Morandi G., Ferrario G., Lovecchio G., Marmo G. and Rubano C., The Inverse Problem, in the Calculus of Variations and the Geometry of the Tangent Bundle, Phys. Rep., 188 (1990) 147.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  187. [187]

    Morandi G., Napoli F. and Ercolessi E., Statistical Mechanics. An Intermediate Course (World Scientific, Singapore) 2001.

    Google Scholar 

  188. [188]

    Mostaeazadeh A., Pseudo-Hermitian Quantum. Mechanics, arXiv 0810.5643 (2008).

    Google Scholar 

  189. [189]

    Moyal J. E., Quantum. Mechanics as a Statistical Theory, Proc. Cambdridge Philos. Soc., 45 (1940) 90.

    Google Scholar 

  190. [190]

    Mukunda N., Algebraic Aspects of the Wigner Distribution in Quantum. Mechanics, Pramana, 11 (1978) 1.

    ADS  Article  Google Scholar 

  191. [191]

    Mukunda N., Marmo G., Zampini A., Chaturvedi S. and Simon R., Wigner-Weyl Isomorphism for Quantum. Mechanics on. Lie Groups, J. Math. Phys., 46 (2005) 012106.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  192. [192]

    Naimark M. A., Normed Rings (Wolters-Noordhoff Publishing, Groningen) 1970.

    Google Scholar 

  193. [193]

    Narhofer N. and Thirring W., KMS States for the Weyl Algebra, Lett. Math. Phys., 27 (1993) 133.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  194. [194]

    Nijenhuis A., Jacobi-Type Identities for Bilinear Differential Concomitants of Certain Tensor Fields. I and II, Indag. Math., 17 (1955) 390; 398.

    MathSciNet  MATH  Article  Google Scholar 

  195. [195]

    Nirenberg L. and Newlander A., Complex Analytic Coordinates in Almost Complex Manifolds, Ann. Math., 65 (1957) 391.

    MathSciNet  MATH  Article  Google Scholar 

  196. [196]

    Ohnuki Y. and Watanabe S., Self-Adjointness of Operators in Wigner’s Commutation Relations, J. Math. Phys., 33 (1992) 3653.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  197. [197]

    Pancharatnam S., Generalized Theory of Interference and its Applications, in Collected Works of S. Pancharatnam. (Oxford University Press, Oxford) 1975.

    Google Scholar 

  198. [198]

    Pool J. C. T., Mathematical Aspects of the Weyl Correspondence, J. Math. Phys., 7 (1966) 66.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  199. [199]

    Putnam C. R., The Quantum-Mechanical Equations of Motion and Commutation Relations, Phys. Rev., 83 (1951) 1047.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  200. [200]

    Ranada M. F., Dynamical Symmetries, Bi-Hamiltonian Structures and Superintegrability of n = 2 Systems, J. Math. Phys., 41 (2000) 2121.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  201. [201]

    Reed M. and Simon B., Methods of Modem Mathematical Physics, Vol. I Functional Analysis (Academic Press, New York and London) 1980.

  202. [202]

    Reichenbach H., Philosophical Foundations of Quantum Mechanics (University of California Press) 1944.

    Google Scholar 

  203. [203]

    Richtmyer R. D., Principles of Advanced Mathematical Physics, Vol. I (Springer-Verlag Berlin) 1978.

  204. [204]

    Riesz F. and Nagy B., Lecons d’Analyse Functionnelle (Akademiai Kado’, Budapest) 1952.

    Google Scholar 

  205. [205]

    Rosen G., Formulations of Classical and Quantum. Dynamical Theory (Academic Press, New-York-London) 1969.

    Google Scholar 

  206. [206]

    Rubio R., Algèbres Associatives Locales sur l’Espace des Sections d’un Fibre à Droites, C. R. Acad. Sci. Paris, Sér. I, n. 14, 699 (1984) 821.

    Google Scholar 

  207. [207]

    Samuel J., The Geometric Phase and Ray Space Isometries, Pramana J. Phys., 48 (1997) 959.

    ADS  Article  Google Scholar 

  208. [208]

    Santilli M. R., Foundations of Theoretical Mechanics (Springer, Berlin and New York) 1983.

    Google Scholar 

  209. [209]

    Schouten J. A., On the Differential Operators of First Order in Tensor Calculus, in Conv. Int. Geom. Diff. Italia (Cremonese, Roma) 1954.

    Google Scholar 

  210. [210]

    Schwartz L., Lectures on Complex Analytic Manifolds (Narosa, New Dehli) 1986.

    Google Scholar 

  211. [211]

    Schweber S. S., A Note on Commutators in Quantized Field Theories, Phus. Rev., 78 (1950) 613.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  212. [212]

    Schweber S. S., On Feynman Quantization, J. Math. Phys., 3 (1962) 831.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  213. [213]

    Schweber S. S., Relativistic Quantum. Field Theory (Harper and Row, New York) 1964.

    Google Scholar 

  214. [214]

    Souriau J. M., Structure des Systemes Dynamiques (Dunod, Paris) 1970.

    Google Scholar 

  215. [215]

    Steenrod N., The Topology of Fibre Bundles (Princeton University Press, Princeton) 1951.

    Google Scholar 

  216. [216]

    Streater R. F. and Wightman A. S., PCT, Spind and Statistics and All That (Benjamin Inc., New York) 1964.

    Google Scholar 

  217. [217]

    Stueckelberg E. C. G., Quantum Theory in Real Hilbert Space, Helv. Phys. Acta, 33 (1960) 727; 34 (1961) 621.

    MathSciNet  MATH  Google Scholar 

  218. [218]

    Sudarshan E. G. G., Structure of Dynamical Theories, in Brandeis Lectures in Theoretical Physics 1961 (Benjamin, New York) 1961.

    Google Scholar 

  219. [219]

    Varadarajan V. S., Variations on a Theme by Schwinger and Weyl, Lett. Math. Phys., 34 (1995) 319.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  220. [220]

    Ventriglia F., Alternative Hamiltonian Descriptions for Quantum. Systems and non-Hermitian Operators with Real Spectra, Mod. Phys. Lett. A, 17 (2002) 1589.

    ADS  MATH  Article  Google Scholar 

  221. [221]

    Vilasi G., Hamiltonian Dynamics (World Scientific, Singapore) 2001.

    Google Scholar 

  222. [222]

    von Neumann J., Warscheinlichtkeitstheoretische Aufbau der Quantenmechanik, Goett. Nachr., 10 (1927) 245, in J. von Neumann Collected Papers, edited by TAUB A. H., Vol. I (Pergamon Press, Oxford) 1961.

    MATH  Google Scholar 

  223. [223]

    von Neumann J., Die Mathematische Grundlagen der Quantenmechanik (Springer Berlin and New York) 1932 (English translation: Mathematical Foundations of Quantum. Mechanics (Princeton University Press, Princeton) 1955).

    Google Scholar 

  224. [224]

    Weil A., Introduction à l’Etude des Varietés Kähleriennes (Hermann, Paris) 1958.

    Google Scholar 

  225. [225]

    Weyl H., The Theory of Groups and Quantum. Mechanics (Dover New York) 1950, Chapt. IV, Sect. D.

    Google Scholar 

  226. [226]

    Wiegmann P. B. and Zabrodin A. V., Bethe-Ansatz for the Bloch. Electrons in a Magnetic Field, Phys. Rev. Lett., 72 (1994) 1890.

    ADS  MATH  Article  Google Scholar 

  227. [227]

    Wigner E. P., Über die Operation der Zeitumkehr in der Quantenmechanik, Gott. Nachr., 31 (1932) 546.

    MATH  Google Scholar 

  228. [228]

    Wigner E. P., On the Quantum. Correction for Thermodynamic Equilibrium, Phys. Rev., 40 (1932) 749.

    ADS  MATH  Article  Google Scholar 

  229. [229]

    Wigner E. P., Do the Equations of Motion Determine the Quantum. Mechanical Commutation Relations?, Phys Rev., 77 (1950) 711.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  230. [230]

    Wigner E. P., Group Theory and its Applications to the Quantum. Mechanics of Atomic Spectra (Academic Press, New York, London) 1959.

    Google Scholar 

  231. [231]

    Willmore T. J., The Definition of the Lie Derivative, Proc. Edinburgh. Math. Soc., 12 (1960) 27.

    MathSciNet  MATH  Article  Google Scholar 

  232. [232]

    Wintner A., The Unboundedness of Quantum-Mechanical Matrices, Phys. Rev., 71 (1947) 738.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  233. [233]

    Wootters W. K., Quantum, Mechanics Without Probability Amplitudes, Found. Phys., 16 (1986) 391.

    ADS  MathSciNet  Article  Google Scholar 

  234. [234]

    Wootters W. K., A Wigner-Function Formulation of Finite-State Quantum. Mechanics, Ann. Phys. (New York), 176 (1987) 1.

    ADS  MathSciNet  Article  Google Scholar 

  235. [235]

    Yang L. M., A Note on the Quantum. Rule of the Harmonie Oscillator, Phys. Rev., 84 (1951) 788.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  236. [236]

    Zak J., Magnetic Translation Groups, Phys. Rev. A, 134 (1964) 1602.

    ADS  Article  Google Scholar 

  237. [237]

    Zak J., Dynamics of Electrons in External Fields, Phys. Rev., 168 (1968) 686.

    ADS  Article  Google Scholar 

  238. [238]

    Zak J., Weyl-Heisenberg Group and Magnetic Translations in a Finite Phase Space, Phys. Rev. B, 39 (1989) 694.

    ADS  MathSciNet  Article  Google Scholar 

  239. [239]

    Zakharov V. E. and Konopelchenko B. G., On the Theory of Recursion Operators, Commun. Math. Phys., 94 (1984) 483.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  240. [240]

    Zampini A., Il Limite Classico della Meccanica Quantistica nella Formulazione à la Weyl-Wigner, Thesis, Napoli, 2001 (unpublished).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Ercolessi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ercolessi, E., Marmo, G. & Morandi, G. From the equations of motion to the canonical commutation relations. Riv. Nuovo Cim. 33, 401–590 (2010). https://doi.org/10.1393/ncr/i2010-10057-x

Download citation

Keywords

  • Quantum mechanics
  • Foundations of quantum mechanics; measurement theory
  • Lagrangian and Hamiltonian mechanics