European facilities for accelerator neutrino physics: Perspectives for the decade to come

Summary

Very soon a new generation of reactor and accelerator neutrino oscillation experiments —Double Chooz, Daya Bay, Reno and T2K— will seek for oscillation signals generated by the mixing parameter θ13. The knowledge of this angle is a fundamental milestone to optimize further experiments aimed at detecting CP violation in the neutrino sector. Leptonic CP violation is a key phenomenon that has profound implications in particle physics and cosmology but it is clearly out of reach for the aforementioned experiments. Since late 90s', a world-wide activity is in progress to design facilities that can access CP violation in neutrino oscillation and perform high-precision measurements of the lepton counterpart of the Cabibbo-Kobayashi-Maskawa matrix. In this paper the status of these studies will be summarized, focusing on the options that are best suited to exploit existing European facilities (firstly CERN and the INFN Gran Sasso Laboratories) or technologies where Europe has a world leadership. Similar considerations will be developed in more exotic scenarios —beyond the standard framework of flavor oscillation among three active neutrinos— that might appear plausible in the occurrence of anomalous results from post-MiniBooNE experiments or the CNGS.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    SEE Glunti C. and Klm C. W., Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press) 2007, and references therein.

    Google Scholar 

  2. [2]

    Pontecoryo B., Sov. Phys. JETP, 6 (1957) 429 (Zh. Eksp. Teor. Fiz., 33 (1957) 549); PONTECORVO B., Sov. Phys. JETP, 6 (1968) 984 (Zh. Eksp. Teor. Fiz., 53 (1967) 1717).

    ADS  Google Scholar 

  3. [3]

    Cowan C. L. JR., Reines F., Harrison F. B., Kruse H. W. and Mcguire A. D., Science, 124 (1956) 103.

    ADS  Article  Google Scholar 

  4. [4]

    Danby G., Gaillard J. M., Goulianos K., Lederman L. M., Mistry N. B., Schwartz M. and Steinberger J., Phys. Rev. Lett., 9 (1962) 36. For early proposals of accelerator neutrino experiments see also Markov M. A., Early Development of Weak Interactions in the USSR (Nauka Publisher, Central Department of Oriental Literature, Moscow) 1985 and B. PONTECORYO, Sov. Phys. JETP, 10 (1960) 1236 (Zh. Eksp. Teor. Fiz., 37 (1959) 1751).

    ADS  Article  Google Scholar 

  5. [5]

    Kodama K. et al. (DONUT Collaboration), Phys. Lett. B, 504 (2001) 218.

    Google Scholar 

  6. [6]

    For a discussion of neutrino masses and the information that can be drawn from neutrino oscillations see, e.g., Bettini A., Riv. Nuovo Cimento, 32 (2009) 295.

  7. [7]

    Cabibbo N., Phys. Rev. Lett., 10 (1963) 531; Kobayashi M. and Maskawa T., Prog. Theor. Phys., 49 (1973) 652.

    ADS  Article  Google Scholar 

  8. [8]

    Christenson J. H. et al., Phys. Rev. Lett., 13 (1964) 138.

    ADS  Article  Google Scholar 

  9. [9]

    Aubert B. et al., Phys. Rev. Lett., 87 (2001) 091801; Abe K. et al., Phys. Rev. Lett. 87 (2001) 091802.

    ADS  Article  Google Scholar 

  10. [10]

    Katayama Y., Matunoto K., Tanaka S. and Yamada E., Prog. Theor. Phys., 28 (1962) 675; Maki Z., Nakagawa M. and Sakata S., Prog. Theor. Phys., 28 (1962) 870; PONTECORVO B., Sov. Phys. JETP, 26 (1968) 984 (Zh. Eksp. Teor. Fiz., 53 (1967) 1717); Gribov V. N. and Pontecoryo B., Phys. Lett. B, 28 (1969) 493.

    ADS  Article  Google Scholar 

  11. [11]

    Schwetz T., Tortola M. A. and Valle J. W. F., New J. Phys., 10 (2008) 113011.

    ADS  Article  Google Scholar 

  12. [12]

    Abe S. et al. (KamLAND Collaboration), Phys. Rev. Lett., 100 (2008) 221803.

    Google Scholar 

  13. [13]

    Ahn M. H. et al. (K2K Collaboration), Phys. Rev. D, 74 (2006) 072003.

    Google Scholar 

  14. [14]

    Adamson P. et al. (MINOS Collaboration), Phys. Rev. Lett., 101 (2008) 131802.

    Google Scholar 

  15. [15]

    Apollonio M. et al. (CHOOZ Collaboration), Eur. Phys. J. C, 27 (2003) 331.

    Google Scholar 

  16. [16]

    Boehm F. et al., Phys. Rev. D, 64 (2001) 112001.

    ADS  Article  Google Scholar 

  17. [17]

    Acquistapace G. et al., CERN-YELLOW-98-02 (1998); Baldy R. et al., INFN-AE-99-5 (1999).

    Google Scholar 

  18. [18]

    Schwetz T., Tortola M. and Valle J. W. F., New J. Phys., 10 (2008) 113011.

    ADS  Article  Google Scholar 

  19. [19]

    Balantekin A. B. and Yllmaz D., J. Phys. G, 35 (2008) 075007; FoGLI G. L., Lisi E., Marrone A., Palazzo A. and Rotunno A. M., Phys. Rev. Lett., 101 (2008) 141801; Maltoni M. and Schwetz T., arXiv:0812.3161 [hep-ph].

    ADS  Article  Google Scholar 

  20. [20]

    Diwan M. V., Recent Results from the MINOS experiment,in Proceedings of the Thirteen International Workshop on Neutrino Telescopes, Venezia, March 10-13, 2009, arXiv:0904.3706 [hep-ex].

    Google Scholar 

  21. [21]

    Kajita T. and Wendell R., TALKS AT THE 11th International Conference on Topics in Astroparticle and Underground Physics (TAUP2009), Rome, 1-5 July 2009.

    Google Scholar 

  22. [22]

    Wolfenstein L., Phys. Rev. D, 17 (1978) 2369; Mikheev S. P. and Smirnov A. Y., Sov. J. Nucl. Phys., 42 (1985) 913 (Yad. Fiz., 42 (1985) 1441).

    ADS  Article  Google Scholar 

  23. [23]

    Amsler C. et al. (Particle Data Group), Phys. Lett. B, 667 (2008) 1.

    Google Scholar 

  24. [24]

    Burguet-Castell J., Gavela M. B., Gomez-Cadenas J. J., Hernandez P. and Mena O., Nucl. Phys. B, 608 (2001) 301.

    ADS  Article  Google Scholar 

  25. [25]

    Minakata H. and Nunokawa H., JHEP, 0110 (2001) 001.

    ADS  Article  Google Scholar 

  26. [26]

    Barger V., Marfatia D. and Whisnant K., Phys. Rev. D, 65 (2002) 073023.

    ADS  Article  Google Scholar 

  27. [27]

    Fogli G. L. and Lisi E., Phys. Rev. D, 54 (1996) 3667.

    ADS  Article  Google Scholar 

  28. [28]

    For A Recent Update, See Huber P., Lindner M., Schwetz T. and Winter W., arXiv:0907.1896 [hep-ph].

  29. [29]

    Current and future facilities in Europe and perspectives in US and Japan have been discussed in the European Strategy for Future Neutrino Physics Workshop, CERN, 1-3 October 2009. Information are available at http://indico.cern.ch/conferenceDisplay.py?confId=59378.

  30. [30]

    Itow Y. et al. (The T2K Collaboration), arXiv:hep-ex/0106019.

  31. [31]

    Ardellier F. et al. (Double Chooz Collaboration), arXiv:hep-ex/0606025.

  32. [32]

    Guo X. et al. (Daya-Bay Collaboration), arXiv:hep-ex/0701029.

  33. [33]

    Kim S. B. (RENO COLLABORATION), AIP Conf. Proc., 981 (2008) 205 (J. Phys. Conf. Ser., 120 (2008) 052025).

    ADS  Article  Google Scholar 

  34. [34]

    Guler M. et al. (OPERA Collaboration), CERN-SPSC-2000-028, CERN-SPSC-P-318, LNGS-P25-00, 2000; Acquafredda R. et al. (OPERA Collaboration), New J. Phys., 8 (2006) 303; Acquafredda R. et al. (OPERA Collaboration), JINST, 4 (2009) P04018.

    Google Scholar 

  35. [35]

    Komatsu M., Migliozzi P. and Terranova F., J. Phys. G, 29 (2003) 443.

    ADS  Article  Google Scholar 

  36. [36]

    Athanassopoulos C. et al. (LSND Collaboration), Phys. Rev. Lett., 75 (1995) 2650; Athanassopoulos C. et al. (LSND Collaboration), Phys. Rev. C, 54 (1996) 2685; Athanassopoulos C. et al. (LSND Collaboration), Phys. Rev. C, 58 (1998) 2489; Aguilar A. et al. (LSND Collaboration), Phys. Rev. D, 64 (2001) 112007.

    Google Scholar 

  37. [37]

    Aguilar-Arevalo A. A. et al. (MiniBooNE Collaboration), Phys. Rev. Lett., 102 (2009) 101802.

    Google Scholar 

  38. [38]

    Mezzetto M., Next Challenge in Neutrino Physics: the theta(13) Angle,in Proceedings of the Thirteen International Workshop on Neutrino Telescopes, Venezia, March 10-13, 2009, arXiv:0905.2842 [hep-ph].

    Google Scholar 

  39. [39]

    Ayres D. S. et al. (NOvA Collaboration), arXiv:hep-ex/0503053. See also http://www-nova.fnal.gov

  40. [40]

    Huber P., Lindner M. and Winter W., Comput. Phys. Commun., 167 (2005) 195; Huber P., Kopp J., Lindner M., Rolinec M. and Winter W., Comput. Phys. Commun., 177 (2007) 432.

    ADS  Article  Google Scholar 

  41. [41]

    Huber P., Lindner M., Rolinec M., Schwetz T. and Winter W., Nucl. Phys. Proc. Suppl., 145 (2005) 190.

    ADS  Article  Google Scholar 

  42. [42]

    Other venues have also been explored: they include the exploitation of Mossbauer neutrinos (Raghavan R. S., arXiv:hep-ph/0601079; MiNAKATA H., Nunokawa H., Parke S. J. and Zukanovich Funchal R., Phys. Rev. D, 76 (2007) 053004), high-intensity radioactive sources (GioMATARis Y. and Vergados J. D., Nucl. Instrum. Methods A, 530 (2004) 330) and laser-driven sources (Bulanov S. V., Esirkepov T., MiGLiozzi P., Pegoraro F., Tajima T. and Terranova F., Nucl. Instrum. Methods A, 540 (2005) 25).

  43. [43]

    Berg J. S. et al. (ISS Accelerator Working Group), JINST, 4 (2009) P07001.

  44. [44]

    Kopp S. E., Phys. Rep., 439 (2007) 101.

    ADS  Article  Google Scholar 

  45. [45]

    Eskut E. et al. (CHORUS Collaboration), Nucl. Instrum. Methods A, 401 (1997) 7; Eskut E. et al. (CHORUS Collaboration), Nucl. Phys. B, 793 (2008) 326.

    ADS  Article  Google Scholar 

  46. [46]

    Astier P. et al. (NOMAD Collaboration), Phys. Lett. B, 570 (2003) 19; Altegoer J. et al. (NOMAD Collaboration), Nucl. Instrum. Methods A, 404 (1998) 96.

    ADS  Article  Google Scholar 

  47. [47]

    Information and documentation available at http://projectx.fnal.gov/.

  48. [48]

    Ayres D.S. et al., “The NOVA (E929) Techical Design Report”, public Draft Version available online at http://www-nova.fnal.gov/nova_cd2jeview/tdr/tdr.htm.

  49. [49]

    Baibussinov B. et al., Astropart. Phys., 29 (2008) 174.

    ADS  Article  Google Scholar 

  50. [50]

    Meddahi M. and Shaposhnikova E., CERN-AB-2007-013.

  51. [51]

    Information available at http://paf-ps2.web.cern.ch/paf-ps2/.

  52. [52]

    Bettoni D. et al., Phys. Rep., 434 (2006) 47.

    ADS  Article  Google Scholar 

  53. [53]

    Marciano W.,TALK AT THE 2nd Workshop on Physics with an Intense Proton Source, Fermilab, IL, Jan 25-28 2008. Available at www.fnal.gov/directorate/Longrange/Steering_Public/workshop-physics-2nd.html.

    Google Scholar 

  54. [54]

    Autin B. et al., “Conceptual design of the SPL, a high-power superconducting H-linac at CERN”, CERN-2000-012.

  55. [55]

    Baylac M. et al., “Conceptual design of the SPL II: A high-power superconducting H-linac at CERN”, CERN-2006-006; Brunner O. et al., Phys. Rev. ST Accel. Beams, 12 (2009) 070402.

  56. [56]

    Campagne J. E., Maltoni M., Mezzetto M. and Schwetz T., JHEP, 0704 (2007) 003.

    ADS  Article  Google Scholar 

  57. [57]

    Bandyopadhyay A. et al. (ISS Physics Working Group), arXiv:0710.4947 [hep-ph].

  58. [58]

    Huber P., Mezzetto M. and Schwetz T., JHEP, 0803 (2008) 021.

    ADS  Article  Google Scholar 

  59. [59]

    Hylen J., Talk at the 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams (Nufact09), Chicago, IL, July 20-25, 2009.

    Google Scholar 

  60. [60]

    Koshiba M., Phys. Rep., 220 (1992) 229; Nakamura K.,talk at the International Workshop on Next Generation Nucleon Decay and Neutrino Detector, 1999, SUNY at Stony Brook; Nakamura K., Neutrino Oscillations and Their Origin (Universal Academy Press, Tokyo) 2000, p. 359.

    ADS  Article  Google Scholar 

  61. [61]

    Kajita T. and Soo-Bong K. (Editors), Proccedings of the 3rd International Workshop On a Far Detector In Korea For The J-PARC Neutrino Beam 30 Sept. - 1 Oct. 2007, Tokyo, Japan.

  62. [62]

    Autiero D. et al., J. Cosmol. Astroparticle Phys., 0711 (2007) 011.

    ADS  Article  Google Scholar 

  63. [63]

    Abe T. et al. (ISS Detector Working Group), JINST, 4 (2009) T05001.

  64. [64]

    Rubbia C., “The liquid Argon Time Projection Chamber: a new concept for Neutrino Detector”, CERN-EP/77-08.

  65. [65]

    Amerio S. et al. (ICARUS Collaboration), Nucl. Instrum. Methods A, 527 (2004) 329.

    Google Scholar 

  66. [66]

    Bueno A. et al., JHEP, 0704 (2007) 041.

    ADS  Article  Google Scholar 

  67. [67]

    Oberauer L., Nucl. Phys. Proc. Suppl., 188 (2009) 321.

    ADS  Article  Google Scholar 

  68. [68]

    Mosca L., AIP Conf. Proc., 944 (2007) 65.

    ADS  Article  Google Scholar 

  69. [69]

    Oberauer L., von Feilitzsch F. and Potzel W., Nucl. Phys. B (Proc. Suppl.), 138 (2005) 108; Marrodan Undagoitia T. et al., J. Phys. Conf. Ser., 120 (2008) 052018; Peltoniemi J., arXiv:0911.4876 [hep-ex]; Peltoniemi J., arXiv:0911.5234 [hep-ph].

    ADS  Article  Google Scholar 

  70. [70]

    Rubbia A., J. Phys. Conf. Ser., 171 (2009) 012020.

    Article  Google Scholar 

  71. [71]

    Geer S., lecture at the 1st International Neutrino Factory Summer Institute, Abingdom, UK, June 24-29, 2002.

    Google Scholar 

  72. [72]

    Geer S., Phys. Rev. D, 57 (1998) 6989 (59 (1999) 039903(E)).

    ADS  Article  Google Scholar 

  73. [73]

    de Rujula A., Gavela M. B. and Hernandez P., Nucl. Phys. B, 547 (1999) 21.

    ADS  Article  Google Scholar 

  74. [74]

    Ahmad Q. R. et al. (SNO Collaboration), Phys. Rev. Lett., 87 (2001) 071301.

    Google Scholar 

  75. [75]

    Blondel A., Talk at the 11th International Workshop on Neutrino Factories, Superbeams and Beta Beams (Nufact09), Chicago, IL, July 20-25, 2009.

    Google Scholar 

  76. [76]

    Bross A., “The Neutrino Factory: The Final Frontier in Neutrino Physics?” FERMILAB-CONF-09-169-APC, Presented at Particle Accelerator Conference (PAC 09), Vancouver, BC, Canada, 4-8 May 2009.

    Google Scholar 

  77. [77]

    Gregoire G. et al. (MICE COLLABORATION), “MICE: International Muon Ionisation Cooling Experiment, Technical Reference Document”, MICE-TRD-2005 (2005).

    Google Scholar 

  78. [78]

    Catanesi M. G. et al. (HARP Collaboration), “Proposal to study hadron production for the neutrino factory and for the atmospheric neutrino flux”, CERN-SPSC/99-35 (1999).

    Google Scholar 

  79. [79]

    Kirk H. G. et al., “The MERIT High-Power Target Experiment at the CERN PS”, EPAC08-WEPP169, FERMILAB-CONF-08-224-APC, presented at the European Particle Accelerator Conference (EPAC 08), Genova, Italy, 23-27 June 2008.

    Google Scholar 

  80. [80]

    Edgecock R. et al., “EMMA - the World's First Non-scaling FFAG”, EPAC08-THPP004 (2008), presented at the European Particle Accelerator Conference (EPAC 08), Genova, Italy, 23-27 June 2008.

  81. [81]

    Norem J. et al., “The MUCOOL RF Program.”, FERMILAB-CONF-06-387-AD, JLAB- ACC-06-481; presented at the European Particle Accelerator Conference (EPAC 06), Edinburgh, Scotland, 26-30 June 2006.

  82. [82]

    Geer S. and Zisman M. S., Prog. Part. Nucl. Phys., 59 (2007) 631.

    ADS  Article  Google Scholar 

  83. [83]

    Donini A., Meloni D. and Mlgliozzi P., Nucl. Phys. B, 646 (2002) 321; AuTIERO D. et al., Eur. Phys. J. C, 33 (2004) 243.

    Google Scholar 

  84. [84]

    Kopp J., Ota T. and Winter W., Phys. Rev. D, 78 (2008) 053007.

    ADS  Article  Google Scholar 

  85. [85]

    Agafonova N. et al., “MONOLITH: A massive magnetized iron detector for neutrino oscillation studies.”, LNGS-P26-2000, CERN-SPSC-2000-031; TERRANOVA F. et al., Int. J. Mod. Phys. A, 16S1B (2001) 736.

    Google Scholar 

  86. [86]

    Alimonti G. et al. (BORExiNO COLLABORATION), Nucl. Instrum. Methods A, 600 (2009) 568.

    Google Scholar 

  87. [87]

    Sajjat Athar M. et al., “India-based neutrino observatory”, INO-2006-01, available at http://www.imsc.res.in/ino/; Datar V. M. et al., J. Phys. Conf. Ser., 136 (2008) 022016.

  88. [88]

    Samanta A., Phys. Lett. B, 673 (2009) 37.

    ADS  Article  Google Scholar 

  89. [89]

    Cervera-Villanueva A., “ISS/IDS detector study”, AIP Conf. Proc., 981 (2008) 51.

    ADS  Article  Google Scholar 

  90. [90]

    The “Emulsion Cloud Chamber” detector concept dates back to 1956 (Nishimura J., Soryusiron Kenkyu, Japan, 12 (1956) 24). In the 80s', this technology was revived by the progress in automatic scanning techniques achieved in Japan (AOKI S. et al., Nucl. Tracks, 12 (1986) 249; AOKI S. et al., Nucl. Instrum. Methods B, 51 (1990) 466) and applied in large-size experiments as DONUT [5], CHORUS [45] and OPERA [34].

  91. [91]

    Zucchelli P., Phys. Lett. B, 532 (2002) 166.

    ADS  Article  Google Scholar 

  92. [92]

    Lindroos M. and Mezzetto M., Artificial Neutrino Beams: Beta Beams (Imperial College Press) 2009.

    Google Scholar 

  93. [93]

    Bouchez J., Lindroos M. and Mezzetto M., AIP Conf. Proc., 721 (2004) 37.

    ADS  Article  Google Scholar 

  94. [94]

    Martone M. et al., “International Fusion Materials Irradiation Facility Conceptual Design Activity”, RT/ERG/FUS/96-11.

  95. [95]

    Bruning O. et al., “LHC luminosity and energy upgrade: A feasibility study”, CERN- LHC-PROJECT-REPORT-626.

  96. [96]

    Burguet-Castell J., Casper D., Gomez-Cadenas J. J., Hernandez P. and Sanchez F., Nucl. Phys. B, 695 (2004) 217; Terranova F., Marotta A., Migliozzi P. and Spinetti M., Eur. Phys. J. C, 38 (2004) 69; Agarwalla S. K., Raychaudhuri A. and Samanta A., Phys. Lett. B, 629 (2005) 33.

    ADS  Article  Google Scholar 

  97. [97]

    Donini A., Fernandez-Martinez E., Migliozzi P., Rigolin S., SCOTTO LAVINA L., TABARELLI DE FATIS T. and Terranova F., Eur. Phys. J. C, 48 (2006) 787; DONINI A. et al., Eur. Phys. J. C, 53 (2008) 599.

    ADS  Article  Google Scholar 

  98. [98]

    Barger V., Dierckxsens M., Diwan M., Huber P., Lewis C., Marfatia D. and Viren B., Phys. Rev. D, 74 (2006) 073004; Diwan M. V. et al., Phys. Rev. D, 68 (2003) 012002.

    ADS  Article  Google Scholar 

  99. [99]

    Rubbia C., Ferrari A., Kadi Y. and Vlachoudis V., Nucl. Instrum. Methods A, 568 (2006) 475.

    ADS  Article  Google Scholar 

  100. [100]

    Information and documentation available at http://www.euronu.org/.

  101. [101]

    Donini A. and Lindroos M., Optimisation of a beta beam, talk at the 10th International Workshop on Neutrino Factories, Superbeams and Betabeams (Nufact08), Valencia, Spain, 30 June - 5 July 2008.

    Google Scholar 

  102. [102]

    Agarwalla S. K., Choubey S., Raychaudhuri A. and Winter W., JHEP, 0806 (2008) 090.

    ADS  Article  Google Scholar 

  103. [103]

    Winter W., talk given at the 10th International Workshop on Neutrino Factories, Superbeams and Betabeams (Nufact08), Valencia, Spain, 30 June - 5 July 2008, arXiv:0809.3890 [hep-ph].

    Google Scholar 

  104. [104]

    Migliozzi P. and Terranova F., Phys. Lett. B, 563 (2003) 73.

    ADS  Article  Google Scholar 

  105. [105]

    Fukugita M. and Yanagida T., Phys. Lett. B, 174 (1986) 45; Anisimov A., Blanchet S. and DI Bari P., J. Cosmol. Astroparticle Phys., 0804 (2008) 033.

    ADS  Article  Google Scholar 

  106. [106]

    Farzan Y. and Smirnov A. Y., Nucl. Phys. B, 805 (2008) 356.

    ADS  Article  Google Scholar 

  107. [107]

    Kostelecky V. A. and Mewes M., Phys. Rev. D, 70 (2004) 031902.

    ADS  Article  Google Scholar 

  108. [108]

    Fogli G. L., Lisi E., Marrone A. and Scioscia G., hep-ph/9906450.

  109. [109]

    Volkas R. R., Prog. Part. Nucl. Phys., 48 (2002) 161.

    ADS  Article  Google Scholar 

  110. [110]

    Maltoni M., Schwetz T., Tortola M. A. and Valle J. W. F., New J. Phys., 6 (2004) 122.

    ADS  Article  Google Scholar 

  111. [111]

    Aguilar-Arevalo A. A. et al. (The MiniBooNE Collaboration), Phys. Rev. Lett., 98 (2007) 231801.

    Google Scholar 

  112. [112]

    Karagiorgi G., Djurcic Z., Conrad J. M., Shaevitz M. H. and Sorel M., Phys. Rev. D, 80 (2009) 073001.

    ADS  Article  Google Scholar 

  113. [113]

    Aguilar-Arevalo A. A. et al. (MiniBooNE Collaboration), Phys. Rev. Lett., 103 (2009) 111801.

    Google Scholar 

  114. [114]

    Maltoni M. and Schwetz T., Phys. Rev. D, 76 (2007) 093005.

    ADS  Article  Google Scholar 

  115. [115]

    Armbruster B. et al. (KARMEN Collaboration), Phys. Rev. D, 65 (2002) 112001.

    Google Scholar 

  116. [116]

    Donini A., Maltoni M., Meloni D., Migliozzi P. and Terranova F., JHEP, 0712 (2007) 013.

    ADS  Article  Google Scholar 

  117. [117]

    Blennow M., Meloni D., Ohlsson T., Terranova F. and Westerberg M., Eur. Phys. J. C, 56 (2008) 529.

    ADS  Article  Google Scholar 

  118. [118]

    Kopp J., Ota T. and Winter W., Phys. Rev. D, 78 (2008) 053007.

    ADS  Article  Google Scholar 

  119. [119]

    Stancu I. et al., “The OscSNS white paper”, available at http://physics.calumet.purdue.edu/oscsns/.

  120. [120]

    Stancu I. et al., arXiv:0910.2698 [hep-ex].

  121. [121]

    Chen H. et al. (MicroBooNE Collaboration), “A proposal for a new experiment using the booster and NuMI neutrino beamline: Microboone”, available at http://www-microboone.fnal.gov/.

  122. [122]

    Aguilar-Arevalo A. A. et al. (SciBooNE Collaboration), arXiv:hep-ex/0601022.

  123. [123]

    Drakoulakos D. et al. (Minerva Collaboration), arXiv:hep-ex/0405002.

  124. [124]

    Rubbia C., “DOUBLE-LAr: sterile neutrinos at the CERN-PS?”, talk at the Workshop on New Opportunities in the Physics Landscape at CERN, CERN, 10-13 May 2009.

    Google Scholar 

  125. [125]

    Baibussinov B. et al., arXiv:0909.0355 [hep-ex].

  126. [126]

    Angelini C. et al. (PS180 Collaboration), Phys. Lett. B, 179 (1986) 307.

    Google Scholar 

  127. [127]

    Armenise N. et al., “Letter of Intent: Search for — v oscillation at the CERN PS”, CERN-SPSC/97-21, SPSC/I216 (1997); Guler M. et al., “Proposal: Search for — ve oscillation at the CERN PS”, CERN-SPSC/99-26, SPSC/P311 (1999).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Battiston.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Battiston, R., Mezzetto, M., MiGLiozzi, P. et al. European facilities for accelerator neutrino physics: Perspectives for the decade to come. Riv. Nuovo Cim. 33, 313–343 (2010). https://doi.org/10.1393/ncr/i2010-10055-0

Download citation

Keywords

  • Neutrino mass and mixing
  • Ordinary neutrinos eμτ)