Coherent optical spectroscopy of semiconductor nanostructures

Summary

Coherent optical spectroscopy of semiconductor nanostructures is a well-established field with several decades of history. This contribution discusses the selected topics of imaging spectroscopy, speckle analysis, and four-wave mixing. Imaging spectroscopy is getting increasingly popular due to the availability of suited detectors, and for the intuition for the physics behind the data provoked by a two- or three-dimensional view on the measured quantities. A general discussion on the optical imaging and detector requirements is presented, followed by examples concerning microcavity polaritons in spectral and time domain as well as in real space and reciprocal space. Speckle analysis is a linear optical technique conceived a decade ago capable of extracting microscopic properties such as dephasing from ensembles of localized optical excitations even in the presence of inhomogeneous broadening. Four-wave mixing is a well-known technique of coherent spectroscopy, which in the last decade has been improved by the introduction of heterodyne detection and spectral interferometry, enabling to investigate quantum wires and quantum dots, both in ensembles and also for individual localized transitions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Meschede D., Optics, Light and Lasers (Wiley, VCH) 2003.

    Google Scholar 

  2. [2]

    Skolnick M. S., Fisher T. A. and Whittaker D. M., Semicond. Sci. Technol., 13 (1998) 645.

    Article  ADS  Google Scholar 

  3. [3]

    Khitrova G., Gibbs H. M., Jahnke F., Kira M. and Koch S. W., Rev. Mod. Phys., 71 (1999) 1591.

    Article  ADS  Google Scholar 

  4. [4]

    Deveaud B. (EDITOR), The Physics of Semiconductor Microcavities: From Fundamentals to Nanoscale Devices (Wiley, VCH) 2006.

    Google Scholar 

  5. [5]

    Kavokin A., Baumberg J. J., Malpuech G. and Laussy F. P., Microcavities (OUP, Oxford) 2007.

    Google Scholar 

  6. [6]

    Jensen J. R., Borri P., Langbein W. and Hvam J. M., Appl. Phys. Lett., 76 (2000) 3262.

    Article  ADS  Google Scholar 

  7. [7]

    Langbein W. and Hvam J. M., Phys. Rev. Lett., 88 (2002) 047401.

    Article  ADS  Google Scholar 

  8. [8]

    Langbein W., J. Phys.: Condens. Matter, 16 (2004) S3645.

  9. [9]

    Gurioli M., Bogani F., Cavigli L., Gibbs H., Khitrova G. and Wiersma D. S., Phys. Rev. Lett., 94 (2005) 183901.

    Article  ADS  Google Scholar 

  10. [10]

    Langbein W., Runge E., Savona V. and Zimmermann R., Phys. Rev. Lett., 89 (2002) 157401.

    Article  ADS  Google Scholar 

  11. [11]

    Langbein W., Shelykh I., Solnyshkov D., Malpuech G., Rubo Y. and Kavokin A., Phys. Rev. B, 75 (2007) 075323.

    Article  ADS  Google Scholar 

  12. [12]

    Leyder C., Romanelli M., Karr J. P., Giacobino E., Liew T. C. H., Glazov M. M., Kavokin A. V., Malpuech G. and Bramati A., Nature Phys., 3 (2007) 628.

    Article  ADS  Google Scholar 

  13. [13]

    Langbein W., Microcavity polariton dynamics in real and reciprocal space,presented at Proceedings of the 26th International Conference on the Physics of Semiconductors (Institute of Physics Publishing, Bristol) 2002.

    Google Scholar 

  14. [14]

    Langbein W., Speckle-Analysis of Resonant Light Emission from Solids (Habilitationsschrift, Universitat Dortmund, Dortmund) 2002.

    Google Scholar 

  15. [15]

    Langbein W., Phys. Rev. B, 70 (2004) 205301.

    Article  ADS  Google Scholar 

  16. [16]

    Langbein W. and Patton B., Phys. Rev. Lett., 95 (2005) 017403.

    Article  ADS  Google Scholar 

  17. [17]

    Langbein W., Phys. Status Solidi B, 242 (2005) 2260.

    Article  ADS  Google Scholar 

  18. [18]

    Langbein W., Hvam J. M. and Zimmermann R., Phys. Rev. Lett., 82 (1999) 1040.

    Article  ADS  Google Scholar 

  19. [19]

    Kocherscheidt G., Langbein W., Mannarini G. and Zimmermann R., Phys. Rev. B, 66 (2002) 161314(R).

  20. [20]

    Kocherscheidt G., Langbein W. and Savona V., Phys. Status Solidi B, 238 (2003) 486.

    Article  ADS  Google Scholar 

  21. [21]

    Langbein W., Kocherscheidt G. and Zimmermann R., Probing localized excitons by speckle analysis of resonant light scattering,in Optics of Semiconductors and Their Nanostructures, Vol. 146 of Solid-State Series (Springer, Berlin) 2004, pp. 47–72.

    Google Scholar 

  22. [22]

    Langbein W., Zimmermann R., Runge E. and Hvam J. M., Phys. Status Solidi B, 221 (2000) 349.

    Article  ADS  Google Scholar 

  23. [23]

    Zimmermann R., Langbein W., Runge E. and Hvam J. M., Physica E, 10 (2001) 40.

    Article  ADS  Google Scholar 

  24. [24]

    Kocherscheidt G., Langbein W., Woggon U., Savona V., Zimmermann R., Reuter D. and Wieck A. D., Phys. Rev. B, 68 (2002) 085207.

    Article  ADS  Google Scholar 

  25. [25]

    Savona V. and Langbein W., Phys. Rev. B, 74 (2006) 75311.

    Article  ADS  Google Scholar 

  26. [26]

    Demtroder W., Laser Spectroscopy (Spinger-Verlag, Berlin) 1998.

    Google Scholar 

  27. [27]

    Shah J., Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin) 1996, Chapter 2.

    Google Scholar 

  28. [28]

    Runge E. and Zimmermann R., Phys. Rev. B, 61 (2000) 4786.

    Article  ADS  Google Scholar 

  29. [29]

    Zimmermann R., Runge E. and Savona V., Theory of resonant secondary emission: Rayleigh scattering versus luminescence, in Quantum Coherence, Correlation and Decoherence in Semiconductor Nanostructures, edited by Takagahara T. (Elsevier Science, USA) 2003, p. 89.

  30. [30]

    Langbein W. and Hvam J. M., Phys. Status Solidi A, 178 (2000) 13.

    Article  ADS  Google Scholar 

  31. [31]

    Langbein W., Phys. Status Solidi B, 234 (2002) 84.

    Article  ADS  Google Scholar 

  32. [32]

    Langbein W., Hvam J. M. and Zimmermann R., Time-resolved speckle analysis: Probing the coherence of excitonic secondary emission, presented at The Physics of Semiconductors, edited by Gershoni D. (World Scientific, Singapore) 1999.

    Google Scholar 

  33. [33]

    Langbein W. and Hvam J. M., Excitonic coherence in semiconductor nanostructures measured by speckle analysis,in Proceedings of Advances in Solid State Physics, edited by B Kramer, Vol. 39 (Vieweg, Braunschweig) 1999, pp. 463–472.

    Google Scholar 

  34. [34]

    Langbein W., Leosson K., Jensen J. R., Hvam J. M. and Zimmermann R., Phys. Rev. B, 61 (2000) R10555.

    Article  ADS  Google Scholar 

  35. [35]

    Gammon D., Snow E. S., Shanabrook B. V., Katzer D. S. and Park D., Phys. Rev. Lett., 76 (1996) 3005.

    Article  ADS  Google Scholar 

  36. [36]

    Zimmermann R., Langbein W., Runge E. and Hvam J., Speckle correlation spectroscopy on localized spin-split exciton states in quantum wells, presented at Proceedings of the 25th International Conference on the Physics of Semiconductors, edited by N Miura (Springer, Berlin) 2001.

    Google Scholar 

  37. [37]

    Citrin D. S., Phys. Rev. B, 51 (1995) 14361.

    Article  ADS  Google Scholar 

  38. [38]

    Stroucken T., Knorr A., Thomas P. and Koch S. W., Phys. Rev. B, 53 (1996) 2026.

    Article  ADS  Google Scholar 

  39. [39]

    Andreani L. C. and Bassani F., Phys. Rev. B, 41 (1990) 7536.

    Article  ADS  Google Scholar 

  40. [40]

    Citrin D. S., Phys. Rev. B, 49 (1994) 1943.

    Article  ADS  Google Scholar 

  41. [41]

    Langbein W., Mann C., Woggon U., Klude M. and Hommel D., Phys. Status Solidi A, 190 (2002) 861.

    Article  ADS  Google Scholar 

  42. [42]

    Hübner M., Kuhl J., Stroucken T., Knorr A., Koch S. W., Hey R. and Ploog K., Phys. Rev. Lett., 76 (1996) 4199.

    Article  ADS  Google Scholar 

  43. [43]

    Hayes G. R., Staehli J. L., Oesterle U., Deveaud B., Phillips R. T. and Ciuti C., Phys. Rev. Lett., 83 (1999) 2837.

    Article  ADS  Google Scholar 

  44. [44]

    Hübner M., Prineas J. P., Ell C., Brick P., Lee E. S., Khitrova G., Gibbs H. M. and Koch S. W., Phys. Rev. Lett., 83 (1999) 2841.

    Article  ADS  Google Scholar 

  45. [45]

    Prineas J. P., Ell C., Lee E. S., Khitrova G., Gibbs H. M. and Koch S. W., Phys. Rev. B, 61 (2000) 13863.

    Article  ADS  Google Scholar 

  46. [46]

    Prineas J. P., Shah J., Grote B., Ell C., Khitrova G., Gibbs H. M. and Koch S. W., Phys. Rev. Lett., 85 (2000) 3041.

    Article  ADS  Google Scholar 

  47. [47]

    Malpuech G., Kavokin A., Langbein W. and Hvam J. M., Phys. Rev. Lett., 85 (2000) 650.

    Article  ADS  Google Scholar 

  48. [48]

    Kavokin A. V. and Baumberg J., Phys. Rev. B, 57 (1998) R12697.

    Article  ADS  Google Scholar 

  49. [49]

    Birkedal D. and Shah J., Phys. Rev. Lett., 81 (1998) 2372.

    Article  ADS  Google Scholar 

  50. [50]

    Birkedal D., Shah J., Shchegrov A. and Pfeiffer L., Phys. Status Solidi A, 178 (2000) 5.

    Article  ADS  Google Scholar 

  51. [51]

    Hayes G. R., Deveaud B., Savona V. and Haacke S., Phys. Rev. B, 62 (2000) 6952.

    Article  ADS  Google Scholar 

  52. [52]

    Haacke S., Schaer S., Deveaud B. and Savona V., Phys. Rev. B, 61 (2000) 5109.

    Article  ADS  Google Scholar 

  53. [53]

    Würner M. and Shah J., Phys. Rev. Lett., 81 (1998) 4208.

    Article  ADS  Google Scholar 

  54. [54]

    Haacke S., Taylor R., Zimmermann R., Bar-Joseph I. and Deveaud B., Phys. Rev. Lett., 78 (1997) 2228.

    Article  ADS  Google Scholar 

  55. [55]

    Lepetit L., Cheriaux G. and Joffre M., J. Opt. Soc. Am. B, 12 (1995) 2467.

    Article  ADS  Google Scholar 

  56. [56]

    Savona V. and Zimmermann R., Phys. Rev. B, 60 (1999) 4928.

    Article  ADS  Google Scholar 

  57. [57]

    Savona V., Haacke S. and Deveaud B., Phys. Rev. Lett., 84 (2000) 183.

    Article  ADS  Google Scholar 

  58. [58]

    Kavokin A., Malpuech G. and Langbein W., Solid State Commun., 120 (2001) 259.

    Article  ADS  Google Scholar 

  59. [59]

    Grote B., Ell C., Koch S. W., Gibbs H. M., Khitrova G., Prineas J. P. and Shah J., Phys. Rev. B, 64 (2001) 045330.

    Article  ADS  Google Scholar 

  60. [60]

    Cundiff S. T., Opt. Express, 16 (2008) 4639.

    Article  ADS  Google Scholar 

  61. [61]

    Fan X., Takagahara T., Cunningham J. E. and Wang H., Solid State Commun., 108 (1998) 857.

    Article  ADS  Google Scholar 

  62. [62]

    Erland J., Kim J. C., Bonadeo N. H., Steel D. G., Gammon D. and Katzer D. S., Phys. Rev. B, 60 (1999) R8497.

    Article  ADS  Google Scholar 

  63. [63]

    Gindele F., Woggon U., Langbein W., Hvam J. M., Leonardi K., Hommel D. and Selke H., Phys. Rev. B, 60 (1999) 8773.

    Article  ADS  Google Scholar 

  64. [64]

    Wagner H. P., Langbein W. and Hvam J. M., Phys. Rev. B, 59 (1999) 4584.

    Article  ADS  Google Scholar 

  65. [65]

    Blrkedal D., Leosson K. and Hvam J. M., Phys. Rev. Lett, 87 (2001) 227401.

    Article  ADS  Google Scholar 

  66. [66]

    Borri P., Langbein W., Schneider S., Woggon U., Sellin R. L., Oüyang D. and Blmberg D., Phys. Rev. Lett., 87 (2001) 157401.

    Article  ADS  Google Scholar 

  67. [67]

    Langbein W. and Patton B., Opt. Lett., 31 (2006) 1151.

    Article  ADS  Google Scholar 

  68. [68]

    Loudon R., The Quantum Theory of Light (Oxford Science Publications, Oxford) 1983.

    Google Scholar 

  69. [69]

    Shen Y. R., The Principles of Nonlinear Optics (Wiley-Interscience, New York) 1984.

    Google Scholar 

  70. [70]

    Allen L. C. and Eberly J. H., Optical Resonance and Two-Level Atoms (Dover Publications) 1987.

    Google Scholar 

  71. [71]

    Gammon D., Snow E. S., Shanabrook B. V., Katzer D. S. and Park D., Science, 273 (1996) 87.

    Article  ADS  Google Scholar 

  72. [72]

    Bayer M. and Forchel A., Phys. Rev. B, 65 (2002) 041308(R).

  73. [73]

    Muller A., Flagg E. B., Bianucci P., Wang X. Y., Deppe D. G., Ma W., Zhang J., Salamo G. J., Xiao M. and Shih C. K., Phys. Rev. Lett., 99 (2007) 187402.

    Article  ADS  Google Scholar 

  74. [74]

    Mukamel S., Principles of Nonlinear Optical Spectroscopy (Oxford, USA) 1999.

    Google Scholar 

  75. [75]

    Klingshirn C. F., Semiconductor Optics (Spinger-Verlag, Berlin Heidelberg) 1995.

    Google Scholar 

  76. [76]

    Erland J., Pantke K. H., Mizeikis V., Lyssenko V. G. and Hvam J. M., Phys. Rev. B, 50 (1994) 15047.

    Article  ADS  Google Scholar 

  77. [77]

    Borri P., Langbein W., Hvam J. M. and Martelli F., Phys. Rev. B, 60 (1999) 4505.

    Article  ADS  Google Scholar 

  78. [78]

    Schnabel R. F., Zimmermann R., Bimberg D., Nickel H., Lösch R. and Schlapp W., Phys. Rev. B, 46 (1992) 9873.

    Article  ADS  Google Scholar 

  79. [79]

    Leosson K., Jensen J. R., Langbein W. and Hvam J. M., Phys. Rev. B, 61 (2000) 10322.

    Article  ADS  Google Scholar 

  80. [80]

    Langbein W. and Hvam J. M., Phys. Rev. B, 61 (2000) 1692.

    Article  ADS  Google Scholar 

  81. [81]

    Langbein W., Meier T., Koch S. and Hvam J., J. Opt. Soc. Am. B, 18 (2001) 1318.

    Article  ADS  Google Scholar 

  82. [82]

    Langbein W. and Hvam J. M., Phys. Status Solidi A, 190 (2002) 167.

    Article  ADS  Google Scholar 

  83. [83]

    Siegman A. E., Lasers (Oxford) 1986.

    Google Scholar 

  84. [84]

    Hall K. L., Lenz G., Ippen E. P. and Raybon G., Opt. Lett., 17 (1992) 874.

    Article  ADS  Google Scholar 

  85. [85]

    Sun C.-K., Golubovic B., Fujlmoto J. G., Choi H. K. and Wang C. A., Opt. Lett., 20 (1995) 210.

    Article  ADS  Google Scholar 

  86. [86]

    Mecozzi A., Mork J. and Hofmann M., Opt. Lett., 21 (1996) 1017.

    Article  ADS  Google Scholar 

  87. [87]

    Hofmann M., Brorson S. D. and Mork J., Appl. Phys. Lett., 68 (1996) 3236.

    Article  ADS  Google Scholar 

  88. [88]

    Borri P., Langbein W., Mork J. and Hvam J. M., Optics Commun., 169 (1999) 317.

    Article  ADS  Google Scholar 

  89. [89]

    Langbein W. and Patton B., J. Phys.: Condens. Matter, 19 (2007) 295203.

    Google Scholar 

  90. [90]

    Stolz H., Time-resolved light scattering from excitons,in Springer Tracts in Modern Physics, edited by G P R D S F T J W P E AHöhler, Vol. 130 (Springer Verlag, Berlin, Heidelberg, New York) 1994.

  91. [91]

    Langbein W., Borri P., Woggon U., Stavarache V., Reuter D. and Wieck A. D., Phys. Rev. B, 69 (2004) 161301R.

    Article  ADS  Google Scholar 

  92. [92]

    Findeis F., Zrenner A., Böhm G. and Abstreiter G., Phys. Rev. B, 61 (2000) R10579.

    Article  ADS  Google Scholar 

  93. [93]

    Albrecht T. F., Bott K., Meier T., Schulze A., Koch M., Cundiff S. T., Feldmann J., Stolz W., Thomas P., Koch S. W. and Göbel E. O., Phys. Rev. B, 54 (1996) 4436.

    Article  ADS  Google Scholar 

  94. [94]

    Besombes L., Kheng K., Marsal L. and Mariette H., Phys. Rev. B, 63 (2001) 155307.

    Article  ADS  Google Scholar 

  95. [95]

    Krummheuer B., Axt V. M. and Kuhn T., Phys. Rev. B, 65 (2002) 195313.

    Article  ADS  Google Scholar 

  96. [96]

    Goupalov S. V., Suris R. A., Lavallard P. and Citrin D. S., IEEE J. Sel. Topics Quantum Electron., 8 (2002) 1009.

    Article  ADS  Google Scholar 

  97. [97]

    Zimmermann R. and Runge E., Dephasing in quantum dots via electron-phonon interaction,in Proceedings of the 26th International Conference on the Physics of Semiconductors,edited by Davies J. H. and Long A. R. (Institute of Physics Publishing, UK) 2002.

  98. [98]

    Takagahara T., Phys. Rev. B, 60 (1999) 2638.

    Article  ADS  Google Scholar 

  99. [99]

    Guest J., Stievater T. H., Chen G., Tabak E. A., Orr B. G., Steel D. G., Gammon D. and Katzer D. S., Science, 293 (2001) 2224.

    Article  ADS  Google Scholar 

  100. [100]

    Peter E., Hours J., Senellart P., Vasanelli A., Cavanna A., Bloch J. and Gérard J. M., Phys. Rev. B, 69 (2004) 41307.

    Article  ADS  Google Scholar 

  101. [101]

    Mannarini G. and Zimmermann R., Phys. Rev. B, 73 (2006) 115325.

    Article  ADS  Google Scholar 

  102. [l02]

    Borri P., Langbein W. and Woggon U., Phys. Rev. B, 71 (2005) 115328.

    Article  ADS  Google Scholar 

  103. [103]

    Fafard S. and Allen C. N., Appl. Phys. Lett., 75 (1999) 2374.

    Article  ADS  Google Scholar 

  104. [104]

    Vagov A., Axt V., Kuhn T., Langbein W., Borri P. and Woggon U., Phys. Rev. B, 70 (2004) 201305(R).

    Article  ADS  Google Scholar 

  105. [105]

    Vagov A., Axt V. M. and Kuhn T., Phys. Rev. B, 66 (2002) 165312.

    Article  ADS  Google Scholar 

  106. [106]

    Vagov A., Axt V. M. and Kuhn T., Phys. Rev. B, 67 (2003) 115338.

    Article  ADS  Google Scholar 

  107. [107]

    Borri P., Langbein W., Hvam J. M. and Martelli F., Phys. Rev. B, 59 (1999) 2215.

    Article  ADS  Google Scholar 

  108. [108]

    Paillard M., Marie X., Renucci P., Amand T., Jbeli A. and Gérard J. M., Phys. Rev. Lett., 86 (2001) 1634.

    Article  ADS  Google Scholar 

  109. [109]

    Stier O., Grundmann M. and Bimberg D., Phys. Rev. B, 59 (1999) 5688.

    Article  ADS  Google Scholar 

  110. [110]

    Dalgarno P. A., Ediger M., Gerardot B. D., Smith J. M., Seidl S., Kroner M., Karrai K., Petroff P. M., Govorov A. O. and Warburton R. J., Phys. Rev. Lett., 100 (2008) 176801.

    Article  ADS  Google Scholar 

  111. [111]

    Matsuda K., Ikeda K., Saiki T., Tsuchiya H., Saito H. and Nishi K., Phys. Rev. B, 63 (2001) 121304.

    Article  ADS  Google Scholar 

  112. [112]

    Uskov A. V., Jauho A.-P., Tromborg B., Mork J. and Lang R., Phys. Rev. Lett., 85 (2000) 1516.

    Article  ADS  Google Scholar 

  113. [113]

    Bimberg D., Grundmann M. and Ledentsov N. N., Quantum Dot Heterostructures (John Wiley and Sons, Chichester) 1999.

    Google Scholar 

  114. [114]

    Sugawara M., Phys. Rev. B, 51 (1995) 10743.

    Article  ADS  Google Scholar 

  115. [115]

    Heitz R., Veit M., Ledensov N. N., Hoffmann A., Bimberg D., Ustinov V. M., KOP'EV P. S. and Alferov Z. I., Phys. Rev. B, 56 (1997) 10435.

    Article  ADS  Google Scholar 

  116. [116]

    Heitz R., Born H., Hoffmann A., Bimberg D., Mukhametzhanov I. and Madhukar A., Appl. Phys. Lett., 77 (2000) 3746.

    Article  ADS  Google Scholar 

  117. [117]

    Muljarov E. A. and Zimmermann R., Phys. Rev. Lett., 98 (2007) 187401.

    Article  ADS  Google Scholar 

  118. [118]

    Ortner G., Yakovlev D. R., Bayer M., Rudin S., Reinecke T. L., Fafard S., Wasilewski Z. and Hawrylak P., Phys. Rev. B, 70 (2004) 201301(R).

    Article  ADS  Google Scholar 

  119. [119]

    Muljarov E. A. and Zimmermann R., Phys. Rev. Lett., 93 (2004) 237401.

    Article  ADS  Google Scholar 

  120. [120]

    Leosson K., Jensen J. R., Hvam J. M. and Langbein W., Phys. Status Solidi B, 221 (2000) 49.

  121. [121]

    Türck V., Rodt S., Stier O., Heitz R., Engelhardt R., Pohl U. W., Bimberg D. and SteingrUber R., Phys. Rev. B, 61 (2000) 9944.

  122. [122]

    Gindele F., Hild K., Langbein W. and Woggon U., Phys. Rev. B, 60 (1999) R2157.

    Article  ADS  Google Scholar 

  123. [123]

    Kuribayashi R., Inoue K., Sakoda K., Tsekhomskii V. A. and Baranov A. V., Phys. Rev. B, 57 (1998) R15084.

    Article  ADS  Google Scholar 

  124. [124]

    Langbein W., Borri P., Woggon U., Stavarache V., Reuter D. and Wieck A. D., Phys. Rev. B, 70 (2004) 033301.

    Article  ADS  Google Scholar 

  125. [125]

    Patton B., Woggon U. and Langbein W., Phys. Rev. Lett., 95 (2005) 266401.

    Article  ADS  Google Scholar 

  126. [126]

    Patton B., Langbein W., Woggon U., Maingault L. and Mariette H.,, Phys. Rev. B, 73 (2006) 235354.

    Article  ADS  Google Scholar 

  127. [127]

    Tischler J. G., Bracker A. S., Gammon D. and Park D., Phys. Rev. B, 66 (2002) 081310(R).

    Article  ADS  Google Scholar 

  128. [128]

    Empedocles S. A., Norris D. J. and Bawenoli M. G., Phys. Rev. Lett., 77 (1996) 3873.

    Article  ADS  Google Scholar 

  129. [129]

    Marsal L., Besombes L., Tinjod F., Kheng K., Wasiela A., Gilles B., Rouviére J.-L. and Mariette H., J. App. Phys., 91 (2002) 4936.

    Article  ADS  Google Scholar 

  130. [130]

    Patton B., Langbein W. and Woggon U., Phys. Rev. B, 68 (2003) 125316.

    Article  ADS  Google Scholar 

  131. [131]

    Couteau C., Moehl S., Tinjod F., G'ERARD J. M., Kheng K., Mariette H., Gaj J. A., Romestain R. and Poizat J. P., Appl. Phys. Lett., 85 (2004) 6251.

    Article  ADS  Google Scholar 

  132. [132]

    Kasprzak J. and Langbein W., Phys. Status Solidi B, 246 (2009) 820.

    Article  ADS  Google Scholar 

  133. [133]

    Masia F., Langbein W. and Borri P., Appl. Phys. Lett., 93 (2008) 021114.

    Article  ADS  Google Scholar 

  134. [134]

    Kasprzak J. and Langbein W., Physical Review B, 78 (2008) 041103.

    Article  ADS  Google Scholar 

  135. [135]

    Kasprzak J., Patton B. and Langbein W., Proc. SPIE, 6892 (2008) 689213.

    Article  Google Scholar 

  136. [136]

    Mukamel S., Annu. Rev. Phys. Chem., 51 (2000) 691.

    Article  ADS  Google Scholar 

  137. [137]

    Danckwerts J., Ahn K. J., Forstner J. and Knorr A., Phys. Rev. B, 73 (2006) 165318.

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. Langbein.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Langbein, W. Coherent optical spectroscopy of semiconductor nanostructures. Riv. Nuovo Cim. 33, 255–312 (2010). https://doi.org/10.1393/ncr/i2010-10054-1

Download citation