High-energy neutrino astronomy

Summary

The field of astroparticle physics entered in a flourishing period thanks to the operation of several experiments that lead to the discovery and even identification of about hundred cosmic TeV gamma-ray sources and measurement of the Ultra-High-Energy Cosmic-Ray flux. At least few tens of the identified TeV gamma sources in the Galaxy are expected to be also high-energy neutrinos sources. Many other extragalactic sources, not seen in TeV gamma-rays, may also be high-energy neutrino emitters. Neutrinos, light and uncharged, are very promising probes for high-energy astrophysics since they can reach the Earth from cosmic distances and from astrophysical environments obscure to high-energy gammas and nuclei. Theoretical estimates indicate that a detection area of the order of a few km2 is required for the measurement of HE cosmic v fluxes. The underwater/ice optical Cerenkov technique is widely considered the most promising experimental approach to build high-energy neutrino detectors in the TeV-PeV energy range. After the first generation of underwater/ice neutrino telescopes (Baikal, AMANDA and ANTARES), the quest for the construction of km2 size detectors have already started. At the South Pole the construction of the IceCube neutrino telescope is in an advanced stage, while the ANTARES, NEMO and NESTOR collaborations together with several other European Institutions take part to KM3NeT aiming at the installation of a km3-scale neutrino telescope in the Mediterranean Sea. Also limits for UHE neutrino detection were strongly improved in the last few years, especially with the recent results of ANITA and Auger. IceRay, a very large detector based on the radio-acoustic technique at the South Pole, has been proposed. Intense R&D activities are also ongoing on thermo-acoustic techniques that could provide a viable solution for UHE detection underwater. This paper reviews the status and perspectives of high-energy neutrino astronomy from an experimental point of view.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Lipari P., Proc. Neutrino Oscillation (Venice, Italy), (2008) arXiv:0808.0417.

  2. [2]

    Greisen K. et al., Phys. Rev. Lett., 16 (1966) 748.

    ADS  Article  Google Scholar 

  3. [3]

    Zatsepin G. T. and Kuzmin V. A., JETP Lett., 4 (1966) 78.

    ADS  Google Scholar 

  4. [4]

    Mangano G. et al., Nucl. Phys. B, 729 (2005) 221.

    ADS  Article  Google Scholar 

  5. [5]

    Bahgall J. N. and Pinsonneault M., Rev. Mod. Phys., 64 (1992) 64.

    Google Scholar 

  6. [6]

    Ahmad Q. R. et al., Phys. Rev. Lett., 87 (2001) 071301.

    ADS  Article  Google Scholar 

  7. [7]

    Davis R. et al., Phys. Rev. Lett., 20 (1968) 1205.

    ADS  Article  Google Scholar 

  8. [8]

    The Superkamiokande Collaboration, Phys. Rev. Lett., 82 (1992) 2644.

    Google Scholar 

  9. [9]

    Hirata K. et al., Phys. Rev. Lett., 58 (1987) 1490; Hirata K. et al., Phys. Rev. D, 38 (1988) 448.

    ADS  Article  Google Scholar 

  10. [10]

    Bionta R. M. et al., Phys. Rev. Lett., 58 (1987) 1494; Bratton R. B. et al., Phys. Rev. D, 37 (1988) 3361.

    ADS  Article  Google Scholar 

  11. [11]

    Alekseev E. N. et al., JETP Lett., 45 (1987) 589; Alekseev E. N. et al., Phys. Lett. B, 205 (1988) 209.

    ADS  Google Scholar 

  12. [12]

    Berezinsky V. S. and Zatsepin G. T., Phys. Lett. B, 28 (1969) 423.

    ADS  Article  Google Scholar 

  13. [13]

    Hess V., Phys. Z., 13 (1913) 1084.

    Google Scholar 

  14. [14]

    Pacini C., Nuovo Cimento, 6 (1912) 93.

    Article  Google Scholar 

  15. [15]

    Gaisser T. K., Cosmic Rays and Particle Physics (Cambrige University Press, Cambrige) 1990.

    Google Scholar 

  16. [16]

    Cronin J. W., Gaisser T. K. and Swordy S. P., Sci. Am., 276 (1997) 44.

    ADS  Article  Google Scholar 

  17. [17]

    Fermi E., Phys. Rev., 75 (1949) 1169.

    ADS  Article  Google Scholar 

  18. [18]

    Bell A. R., Mon. Not. R. Astron. Soc, 182 (1978) 147.

    ADS  Article  Google Scholar 

  19. [19]

    Hillas A. M., Annu. Rev. Astron. Astrophys., 22 (1984) 425.

    ADS  Article  Google Scholar 

  20. [20]

    Ginzburg V. L. and Syrovatsky S. I., Origin of Cosmic Rays (Pergamon, New York) 1964.

    Google Scholar 

  21. [21]

    Berezinsky V., J. Phys. Conf. Ser., 120 (2008) 012001.

  22. [22]

    Butt Y., Nature, 460 (2009) 7256.

    Article  Google Scholar 

  23. [23]

    Abdo A. A. et al., Phys. Rev. Lett., 101 (2008) 221101.

    ADS  Article  Google Scholar 

  24. [24]

    Anemori M. et al., Science, 314 (2006) 439.

    ADS  Article  Google Scholar 

  25. [25]

    Vernetto S. et al., Proc. 31st ICRC, Lodz, Poland (2009).

  26. [26]

    Abbasi R. et al., Proc. 31st ICRC, Lodz, Poland (2009).

  27. [27]

    Abdo A. A. et al., Astoph. J., 688 (2008) 1078.

    ADS  Article  Google Scholar 

  28. [28]

    Takeda M. et al., Phys. Rev. Lett., 81 (1998) 1163.

    ADS  Article  Google Scholar 

  29. [29]

    Abbasi R. et al., Astropart. Phys., 32 (2009) 53.

    ADS  Article  Google Scholar 

  30. [30]

    Abbasi R. et al., submitted to Phys. Rev. Lett., arXiv:0910.4184.

  31. [31]

    Abbasi R. et al., Proc. 31th ICRC, Lodz, Poland (2009), arXiv:0906.2319.

  32. [32]

    Waxmann E. and Bahcall J., Phis. Rev. Lett., 78 (1997) 2292.

    ADS  Article  Google Scholar 

  33. [33]

    Biermann P. and Strittmatter P. A., Astrophys. J., 322 (1997) 643.

    ADS  Article  Google Scholar 

  34. [34]

    The Pierre Auger Collaboration, Science, 318 (2007) 938.

    ADS  Article  Google Scholar 

  35. [35]

    Véron-cetty M. P. and Veron P., Astron. Asrtophys., 455 (2006) 773.

    ADS  Article  Google Scholar 

  36. [36]

    Hague J. D. FOR THE PIERRE AUGER COLLABORATION, Proc. 31st ICRC, Lodz, Poland (2009).

  37. [37]

    Tueller J. et al., Astrophys. J., 681-1 (2008) 113.

    ADS  Article  Google Scholar 

  38. [38]

    Gorbunov D. et al., JETP Lett., 87 (2008) 461.

    ADS  Article  Google Scholar 

  39. [39]

    The Hires Collaboration, Phys. Ren. Lett.., 100 (2008) 101101.

    Article  Google Scholar 

  40. [40]

    Abraham J. FOR THE PIERRE AUGER COLLABORATION, Phys. Rev. Lett., 101 (2008) 06110.

    Article  Google Scholar 

  41. [41]

    Soomers P. FOR THE PIERRE AUGER COLLABORATION, Proc. 31st ICRC, Lodz, Poland (2009).

  42. [42]

    Wahlberg H. for the Pierre Auger Collaboration, Proc. 31st ICRC, Lodz, Poland (2009).

  43. [43]

    Aloisio R., Berezinsky V. AND GAZIZOV A., arXiv:0907.5194v1 (2009).

  44. [44]

    Tanimori T. et al., Astrophys. J. Lett., 429 (1994) L61.

    ADS  Article  Google Scholar 

  45. [45]

    de la Calle perez I., et al., Astrophys. J., 599-2 (2003) 909.

    Article  Google Scholar 

  46. [46]

    Aharonian F. et al., Astrophys. J., 539 (2000) 317.

    ADS  Article  Google Scholar 

  47. [47]

    Albert J. et al., Astropart. Phys., 23 (2005) 493.

    ADS  Article  Google Scholar 

  48. [48]

    Aharonian F. et al., Nature, 432 (2000) 75.

    ADS  Article  Google Scholar 

  49. [49]

    Acciari V. A. et al., Astrophys. J. Lett., 684 (2008) L73.

    ADS  Article  Google Scholar 

  50. [50]

    Aharonian F., Science, 315-5808 (2007) 70.

    ADS  Article  Google Scholar 

  51. [51]

    de Angelis A. et al., Riv. Nuovo Cimento, 31 (2008) 131.

    Google Scholar 

  52. [52]

    Costamante L. and Ghisellini G., Astron. Asrtophys., 56 (2002) 384.

    Google Scholar 

  53. [53]

    Spandre G. et al., Nucl. Instrum. Methods A, 572 (2007) 500.

    ADS  Article  Google Scholar 

  54. [54]

    Tibolla O. for the HESS Collaboration, Proc. 31st ICRC, Lodz, Poland (2009), arXiv:0907.0574v1.

  55. [55]

    de Jager O. C. et al., arXiv:0906.2644.

  56. [56]

    Aharonian F. et al., Rep. Prog. Phys., 71 (2008) 096901.

    ADS  Article  Google Scholar 

  57. [57]

    Bartko H. et al., Proc. 23th ICRC, Pune, India (2005).

  58. [58]

    Aharonian F. et al., Astron. Asrtophys., 477-1 (2008) 353.

    ADS  Article  Google Scholar 

  59. [59]

    Gonzales-Garcia M. C., Halzen F. and Mohapatra S., Astropart. Phys., 31-6 (2009) 437.

    ADS  Article  Google Scholar 

  60. [60]

    de Jager O. C. et al., Astrophys. J., 689 (2008) L125.

    ADS  Article  Google Scholar 

  61. [61]

    Funk J., Proc. 30th ICRC, Merida, Mexico (2007).

  62. [62]

    Abdo A. A. et al., Astrophys. J., 695 (2009) L72.

    ADS  Article  Google Scholar 

  63. [63]

    Tanaka T. et al., Astrophys. J., 685-2 (2008) 988.

    ADS  Article  Google Scholar 

  64. [64]

    Aharonian F. et al., Astron. Asrtophys., 464-1 (2007) 235.

    ADS  Article  Google Scholar 

  65. [65]

    Helder E. A. et al., Science, 325-5941 (2009) 719.

    ADS  Article  Google Scholar 

  66. [66]

    Aharonian F. et al., Astron. Asrtophys., 437-1 (2005) L7.

    ADS  Article  Google Scholar 

  67. [67]

    Gabici S., Aharonian F. and Casanova S., Mon. Not.. R. Astron. Soc., 396-3 (2009) 1629.

    ADS  Article  Google Scholar 

  68. [68]

    Abdo A. et al., Astroph. J. Lett., 706 (2009) L1.

    ADS  Article  Google Scholar 

  69. [69]

    Aharonian F. et al., Astron. Asrtophys., 490-2 (2008) 685.

    ADS  Article  Google Scholar 

  70. [70]

    Villante F. L. and Vissani F., Phys. Rev. D, 76 (2007) 125019.

    ADS  Article  Google Scholar 

  71. [71]

    Villante F. L. and Vissani F., Phys. Rev. D, 78-10 (2008) 103007.

    ADS  Article  Google Scholar 

  72. [72]

    Morlino G., Blasi P. and Amatoo E., Astropart. Phys., 31-5 (2009) 376.

    ADS  Article  Google Scholar 

  73. [73]

    Berezhko E. G. and Volk H. J., Astron. Asrtophys., 492-3 (2008) 695.

    ADS  Article  Google Scholar 

  74. [74]

    Berezhko E. G., PUHLOFER and Volk H. J., Astron. Asrtophys., 505-2 (2009) 641.

    ADS  Article  Google Scholar 

  75. [75]

    Mirabel I. F. and Rodriguez L. F., Nature, 392 (1998) 673.

    ADS  Article  Google Scholar 

  76. [76]

    Mirabel I. F., Science, 312 (2006) 1759.

    ADS  Article  Google Scholar 

  77. [77]

    Szostek A. et al., Proc. 31st ICRC, Lodz, Poland (2009), arXiv:0907.3034.

  78. [78]

    Albert J. et al., Science, 312 (2006) 1771.

    ADS  Article  Google Scholar 

  79. [79]

    Reynoso H. R. and Christiansen G. E., Astropart. Phys., 28-6 (2008) 565.

    ADS  Article  Google Scholar 

  80. [80]

    de Naurios M. et al., Proc. 29th ICRC, Pune, India, 4 (2005) 101.104.

  81. [81]

    Jogler T. et al., Proc. 31st ICRC, Lodz, Poland (2009), arXiv:0907.0992.

  82. [82]

    Aharonian F. et al., Astron. Asrtophys., 460-3 (2006) 743.

    ADS  Article  Google Scholar 

  83. [83]

    Sidro N. et al., PoS(MQW6), (2006) 8.

    Google Scholar 

  84. [84]

    Vila G. S. and Romero G. E., AIP Conf. Proc., 1085 (2008) 289.

  85. [85]

    Bordas P., Bosch-Ramon V., Paredes J. M. and Perucho M., PoS(MQW7), 044 (2008) arXiv:0903.3293.

  86. [86]

    Levinson A. and Waxman E., Phys. Rev. Lett., 87 (2001) 171101.

    ADS  Article  Google Scholar 

  87. [87]

    Distefano C. et al., Astrophys. J., 575 (2002) 378.

    ADS  Article  Google Scholar 

  88. [88]

    Romero G. E. et al., Astrophys. J., 632 (2005) 1093.

    ADS  Article  Google Scholar 

  89. [89]

    Aharonian F. et al., J. Phys. Conf. Ser., 39 (2006) 408.

  90. [90]

    Aharonian F. et al., Nature, 439-1 (2006) 1038.

    Google Scholar 

  91. [91]

    Kosack K. et al., Astrophys. J., 608 (2004) L97.

    ADS  Article  Google Scholar 

  92. [92]

    Tsuchiya K. et al., Astrophys. J., 606 (2004) L115.

    ADS  Article  Google Scholar 

  93. [93]

    Albert J. et al., Astrophys. J., 638 (2006) L101.

    ADS  Article  Google Scholar 

  94. [94]

    Aharonian F. et al., Astron. Asrtophys., 503-3 (2009) 817.

    ADS  Article  Google Scholar 

  95. [95]

    van Eldik C. et al., AIP Conf. Proc., 1085 (2008) 146.

  96. [96]

    Eckart A. et al., J. Phys. Conf. Ser., 131-3 (2008) 012002.

  97. [97]

    Crocker R. M. et al., Astrophys. J., 644 (2007) L95.

    ADS  Article  Google Scholar 

  98. [98]

    Wang Q. D. et al., Mon. Not. R. Astron. Soc., 367-3 (2006) 937.

    ADS  Article  Google Scholar 

  99. [99]

    Aharonian F. et al., Phys. Rev. Lett., 97 (2006) 221102.

    ADS  Article  Google Scholar 

  100. [100]

    Liu S. et al., Astrophys. J., 636 (2006) 798.

    ADS  Article  Google Scholar 

  101. [101]

    Ballantyne D. R. et al., Astrophys. J., 657-1 (2007) L13.

    ADS  Article  Google Scholar 

  102. [102]

    Yusef-Zadhe F. et al., Astrophys. J., 682-1 (2008) 361.

    ADS  Article  Google Scholar 

  103. [103]

    Atoyan A. and Dermer C., Astrophys. J., 617 (2004) L123.

    ADS  Article  Google Scholar 

  104. [104]

    Robert J. and GERALD SCHRÉDER, Phys. Rev. Lett., 16 (1966) 252.

    Article  Google Scholar 

  105. [105]

    Aharonian F. et al., Nature, 440 (2006) 1018.

    ADS  Article  Google Scholar 

  106. [106]

    Becker J. K., Rep. Prog. Phys., 458 (2008) 173.

    Article  Google Scholar 

  107. [107]

    Waxman E. and Bachall J., Phys. Rev. D, 59 (1999) 023002.

    ADS  Article  Google Scholar 

  108. [108]

    Battacharije P. and Sigl G., Phys. Rep., 327 (2000) 109.

    ADS  Article  Google Scholar 

  109. [109]

    Fanaroff B., Bernard L. and Riley J. M., Mon. Not. R. Astron. Soc., 167 (1974) 31.

    ADS  Article  Google Scholar 

  110. [110]

    The MAGIC Collaboration, Science, 325 (2008) 1752.

    Article  Google Scholar 

  111. [111]

    Teshima M. FOR THE MAGIC COLLABORATION, Proc. 30th ICRC, Merida, Mexico (2007).

  112. [112]

    Mannhein K., Astrophys. Phys., 3 (1995) 295.

    ADS  Article  Google Scholar 

  113. [113]

    Osterbrock D. E., Rep. Prog. Phys., 54 (1991) 579.

    ADS  Article  Google Scholar 

  114. [114]

    Torres D. F. and Anchordoqui L. A., Rep. Prog. Phys., 67 (2004) 1663.

    ADS  Article  Google Scholar 

  115. [115]

    Stecker F. W. et al., Phys. Rev. Lett, 66 (1991) 2697; 59 (1999) 023002.

    Google Scholar 

  116. [116]

    Achterberg A. et al., Proc. 29th ICRC, Pune, India (2005); Phys. Rev. D, 76 (2007) 042008.

  117. [117]

    Stecker F. W. et al., Phys. Rev. D, 72 (2005) 107301.

    ADS  Article  Google Scholar 

  118. [118]

    Aharonian F. et al., Astrophys. J. Lett., 695-1 (2009) L40.

    ADS  Article  Google Scholar 

  119. [119]

    VERITAS, VLBA, HESS and MAGIC Collaborations, Science, 320 (2009) 444.

    Article  Google Scholar 

  120. [120]

    Meszaros P., Rep. Prog. Phys., 69 (2006) 2259.

    ADS  Article  Google Scholar 

  121. [121]

    Conner J. P, Evans W. D. and Bellan R. D., Astrophys. J., 157 (1969) L157.

    ADS  Article  Google Scholar 

  122. [122]

    van Paradi J. et al., Nature, 386 (1997) 686.

    ADS  Article  Google Scholar 

  123. [123]

    BARRAUD et al., Astron. Asrtophys., 400 (2003) 1021.

    ADS  Article  Google Scholar 

  124. [124]

    Hjorth J. et al., Nature, 423-6942 (2003) 847.

    ADS  Article  Google Scholar 

  125. [125]

    Meszaros P., Nature, 423-6942 (2003) 809.

    ADS  Article  Google Scholar 

  126. [126]

    Sakamoto T. et al., Astrophys. J. Suppl., 175 (2009) 179.

    ADS  Article  Google Scholar 

  127. [127]

    Band D. L. et al., Astrophys. J., 701-2 (2009) 1673.

    ADS  Article  Google Scholar 

  128. [128]

    Waxman E., Phys. Rev. Lett., 75 (1995) 386.

    ADS  Article  Google Scholar 

  129. [129]

    Guetta D. and Granot J., Astrophys. J., 585 (2003) 885.

    ADS  Article  Google Scholar 

  130. [130]

    Kappes A. for the IceCube Collaboration, Proc. 31st ICRC, Lodz, Poland (2009).

  131. [131]

    Aharonian F. et al., Astron. Asrtophys., 495 (2009) 505.

    ADS  Article  Google Scholar 

  132. [132]

    Albert J. et al., Astrophys. J., 667-1 (2007) 358.

    ADS  Article  Google Scholar 

  133. [133]

    Mcenery J. E. for the Milagro Collaboration, Proc. 31st ICRC, Lodz, Poland (2009).

  134. [134]

    Loeb A. and Waxman E., JCAP, 0605 (2006) 003.

    ADS  Article  Google Scholar 

  135. [135]

    Benbow W. et al., Proc. 31st ICRC, Lodz, Poland (2009).

  136. [136]

    The Veritas Collaboration, Nature Lett., (2009) doi:10.1038/nature08557.

    Google Scholar 

  137. [137]

    Acero S. et al., Science, 326-5956 (2009) 1080.

    ADS  Article  Google Scholar 

  138. [138]

    Berezinsky V. S. and Zatsepin G. T., Phys. Lett. B, 28 (1969) 423.

    ADS  Article  Google Scholar 

  139. [139]

    Protheroe R. J. and Johnson P. A., Astropart. Phys., 4 (1996) 253.

    ADS  Article  Google Scholar 

  140. [140]

    Kalashev O. E. et al., Phys. Rev. D, 66 (2002) 063004.

    ADS  Article  Google Scholar 

  141. [141]

    Taylor A. M. and Aharonian F., Phys. Rev. D, 76-8 (2009) 083010.

    ADS  Article  Google Scholar 

  142. [142]

    Anchordoqui A. et al., Phys. Rev. D, 76 (2007) 123008.

    ADS  MathSciNet  Article  Google Scholar 

  143. [143]

    Li Z. AND WAXMAN E., arXiv:0711.4969.

  144. [144]

    Gaisser T. K., Halzen F. and Stanev T., Phys. Rep. D, 258 (1995) 173.

    ADS  Article  Google Scholar 

  145. [145]

    Okun L., Leptons and quarks (North Holland, Amsterdam) 1982.

    Google Scholar 

  146. [146]

    Gandhi R. et al., Phys. Rev. D, 58 (1998) 93009.

    ADS  Article  Google Scholar 

  147. [147]

    Dziewonski A., Earth Sructure in The Encyclopedia of Solid Earth Geography (Van Nosrtand Reinhold, New York) 1989.

    Google Scholar 

  148. [148]

    Markov M. A. and Zheleznykh I. M., Nucl. Phys., 27 (1961) 385.

    Article  Google Scholar 

  149. [149]

    Askaryan G. A., JETP, 14 (1962) 441.

    Google Scholar 

  150. [150]

    Askaryan G. A., JETP, 21 (1965) 658.

    ADS  Google Scholar 

  151. [151]

    Askaryan G. A. et al., Nucl. Instrum.. Methods, 164 (1979) 267.

    ADS  Article  Google Scholar 

  152. [152]

    Fargion D. et al., Astrophys. J., 613 (2004) 1285.

    ADS  Article  Google Scholar 

  153. [153]

    Mobley C. D., Light and Water: radiative transfer in natural waters (Academic Press, San Diego) 1994.

    Google Scholar 

  154. [154]

    Ackermann M. et al., J. Geophys. Res., 111 (2006) D13203.

    ADS  Article  Google Scholar 

  155. [155]

    Bagley P. et al., Conceptual Design Report for a Deep-Sea Research Infrastructure Incorporating a Very Large Volume Neutrino Telescope in the Mediterranean Sea (2008) http://www.km3net.org/CDR/CDR-KM3NeT.pdf.

    Google Scholar 

  156. [156]

    Honda M. et al., Phys. Rev. D, 75 (2007) 043006.

    ADS  Article  Google Scholar 

  157. [157]

    Ambrosio M. et al., Astropart. Phys., 20-2 (2003) 145.

    ADS  Article  Google Scholar 

  158. [158]

    Wang Y. et al., Nucl. Phys. B Proc. Suppl., 175-176 (2008) 551.

  159. [159]

    Gladston L. for the IceCube Collaboration, Proc. 31st ICRC, Lodz, Poland (2009).

  160. [160]

    Roberts A. et al., Rev. Mod. Phys., 64 (1992) 259.

    ADS  Article  Google Scholar 

  161. [161]

    Wischnewski R. FOR THE BAIKAL COLLABORATION, Int. J. Mod. Phys. A, 20 (2005) 6932.

    ADS  Article  Google Scholar 

  162. [162]

    Ayutdinov V. FOR THE BAIKAL COLLABORATION, Nucl. Instrum. Methods A, 602 (2009) 14.

    ADS  Article  Google Scholar 

  163. [163]

    Andres E. et al., Astropart. Phys., 13 (2000) 1.

    ADS  Article  Google Scholar 

  164. [164]

    Ahrens J. et al., Phys. Rev. Lett., 90 (2003) 251101.

    ADS  Article  Google Scholar 

  165. [165]

    Ahrens J. et al., Phys. Rev. Lett., 92 (2004) 071102.

    ADS  Article  Google Scholar 

  166. [166]

    The Icecube Collaboration, Phys. Rev. D, 79 (2009) 102005.

    Article  Google Scholar 

  167. [167]

    Schukraft A. for the IceCube Collaboration, Proc. 31st ICRC, Lodz, Poland (2009).

  168. [168]

    Gonzalez-Garcia M. C. et al., JHEP, 0610 (2006) 075.

    ADS  Article  Google Scholar 

  169. [169]

    Barr G. D. et al., Phys. Rev. D, 70 (2004) 023006.

    ADS  Article  Google Scholar 

  170. [170]

    Honda M. et al., Phys. Rev. D, 75 (2007) 043006.

    ADS  Article  Google Scholar 

  171. [171]

    The IceCube Collaboration, IceCube Preliminary Design Document, (2001) http:/ / www.icecube.wisc.edu/ science/ publications/ pdd/ pdd.pdf.

  172. [172]

    Stokstad R. G. FOR THE ICECUBE COLLABORATION, Nucl. Phys. B Proc. Suppl., 118 (2003) 514.

  173. [173]

    Wiebuschv C. for the IceCube Collaboration, Proc. 31st ICRC, Lodz, Poland (2009).

  174. [174]

    Gaisser T. K. for the IceCube Collaboration, Proc. 30th ICRC, Merida, Mexico (2007), arXiv:0711.0353.

  175. [175]

    Deyoung T. FOR THE ICECUBE COLLABORATION, Mod. Phys. Lett. A, 24 (2009) 1543.

    ADS  Article  Google Scholar 

  176. [176]

    Karle A. for the IceCube Collaboration, Proc. 31st ICRC, Lodz, Poland (2009).

  177. [177]

    Abbasi R. FOR THE ICECUBE COLLABORATION, Astrophys. J. Lett., 701 (2009) L47.

    ADS  Article  Google Scholar 

  178. [178]

    Resvanis L. K. FOR THE NESTOR COLLABORATION, Proceedings of NOVE, Venice - Italy, 2006.

  179. [179]

    Stanley D. J. et al., Nature, 273 (1978) 110.

    ADS  Article  Google Scholar 

  180. [180]

    Pinchon X. et al., Geolog. Soc., Special Publ., 10 (1982) 319.

    Article  Google Scholar 

  181. [181]

    Anassontis E. G. FOR THE NESTOR COLLABORATION, Nucl. Instrum. Methods A, 479 (2002) 439.

    ADS  Article  Google Scholar 

  182. [182]

    Rapidis P. FOR THE NESTOR COLLABORATION, Nucl. Instrum. Methods A, 602 (2009) 54.

    ADS  Article  Google Scholar 

  183. [183]

    Aggouras G. FOR THE NESTOR COLLABORATION, Astropart. Phys., 23 (2005) 377.

    ADS  Article  Google Scholar 

  184. [184]

    Montaruli T. FOR THE ANTARES COLLABORATION, Int. J. Mod. Phys. A, 24 (2009) 1656.

    ADS  Article  Google Scholar 

  185. [185]

    Circella M. FOR THE ANTARES COLLABORATION, Nucl. Instrum. Methods A, 602 (2009) 2.

    ADS  Google Scholar 

  186. [186]

    Vallage B. FOR THE ANTARES COLLABORATION, Nucl. Phys. B, 151 (2006) 407.

    Article  Google Scholar 

  187. [187]

    Heijboer A. for the ANTARES Collaboration, Proc. 31st ICRC, Lodz, Poland, (2009), arXiv:0908.0816.

  188. [188]

    Toscano S. for the ANTARES Collaboration, Proc. 31st ICRC, Lodz, Poland (2009), arXiv:0908.0864.

  189. [189]

    Ambrosio M. et al., Astrophys. J., 564 (2001) 1038.

    ADS  Article  Google Scholar 

  190. [190]

    Abe K. et al., Astrophys. J., 652 (2006) 198.

    ADS  Article  Google Scholar 

  191. [191]

    Migneco E. et al., Nucl. Instrum. Methods A, 588 (2008) 111.

    ADS  Article  Google Scholar 

  192. [192]

    Riccobene G. et al., Astropart. phys., 27 (2007) 1.

    ADS  Article  Google Scholar 

  193. [193]

    Capone A. et al., Nucl. Instrum.. Methods A, 602 (2009) 47.

    ADS  Article  Google Scholar 

  194. [194]

    Ameli F. et al., IEEE Trans. Nucl. Sci., 55-1 (2008) 233.

    ADS  Article  Google Scholar 

  195. [195]

    Aiello S. et al., arXiv:0910.1269 (2009).

  196. [196]

    Katz U. F. et al., Nucl. Instrum. Methods A, 602 (2009) 40.

    ADS  Article  Google Scholar 

  197. [197]

    http://www.km3net.org/CDR/CDR-KM3NeT.pdf.

  198. [198]

    Coniglione R. et al., Nucl. Instrum.. Methods A, 602 (2009) 98.

    ADS  Article  Google Scholar 

  199. [199]

    Sapienza P. et al., Nucl. Instrum.. Methods A, 602 (2009) 101.

    ADS  Article  Google Scholar 

  200. [200]

    Vannoni G. et al., Proceedings of VLVnT09 Athens, Greece, to be published in Nucl. Instrum. Methods.

  201. [201]

    Sapienza P. et al., Proceedings of VLVnT09 Athens, Greece, to be published in Nucl. Instrum. Methods.

  202. [202]

    Kopper C. et al., Proceedings of VLVnT09 Athens, Greece, to be published in Nucl. Instrum. Methods.

  203. [203]

    Coniglione R. et al., Proceedings of VLVnT09 Athens, Greece, to be published in Nucl. Instrum. Methods.

  204. [204]

    Saltzberg D. et al., Phys. Rev. Lett., 86 (2001) 2802.

    ADS  Article  Google Scholar 

  205. [205]

    Gorham P. W. et al., Phys. Rev. D, 72-2 (2004) 023002.

    Google Scholar 

  206. [206]

    Connolly A., Nucl. Instrum. Methods A, 595-1 (2008) 260.

    ADS  Article  Google Scholar 

  207. [207]

    Kravchenko I. et al., Astropart. Phys., 19 (2003) 15.

    ADS  Article  Google Scholar 

  208. [208]

    Kravchenko I. et al., arXiv:0705.4491 (2007).

  209. [209]

    Hogan D. P. et al., Phys. Rev. D, 78 (2008) 075031.

    ADS  Article  Google Scholar 

  210. [210]

    Kravchenko I. et al., AIP Conf. Proc., 870 (2006) 212.

  211. [211]

    Landsman H. et al., Nucl. Instrum. Methods A, 604-1 (2009) S70.

    Article  Google Scholar 

  212. [212]

    Barwick S. W. et al., Phys. Rev. Lett., 96 (2006) 171101.

    ADS  Article  Google Scholar 

  213. [213]

    Gorham P. W. et al., Astropart. Phys., 32 (2009) 10.

    ADS  Article  Google Scholar 

  214. [214]

    Gorham P. W., et al., Phys. Rev. Lett, 103 (2009) 051103.

    ADS  Article  Google Scholar 

  215. [215]

    Allison P. et al., Nucl. Instrum. Methods A, 604-1 (2009) S64.

    Article  Google Scholar 

  216. [216]

    Besson D. Z., Astropart. Phys., 19 (2003) 15.

    ADS  Article  Google Scholar 

  217. [217]

    Dagkemanskii R. D. and Zheleznykh I. M., Sov. Phys. JETP Lett., 50 (1989) 233.

    Google Scholar 

  218. [218]

    James C. W. et al., Proc. 30th ICRC, Merida, Mexico (2008), p. 1503.

    Google Scholar 

  219. [219]

    Gorham P. W., et al., Proc. SPIE, 4858 (2003) 171.

  220. [220]

    Artemenko I. A. et al., Proc. 27th ICRC, Hamburg, Germany (2001).

    Google Scholar 

  221. [221]

    Ekers R. D. et al., Nucl. Instrum. Methods A, 604-1 (2009) S106.

    Article  Google Scholar 

  222. [222]

    Riccobene G., J. Phys. Conf. Ser., 136 (2008) 022053.

  223. [223]

    Askaryan G. A., Atom. Ener., 3 (1957) 153.

    Google Scholar 

  224. [224]

    Landau L. D. and Pomeranchuk I. J., Dokl. Akad. Nauk. SSSR, 92 (1953) 535.

    Google Scholar 

  225. [225]

    Migdal A. B., Phys. Rev., 103 (1956) 1811.

    ADS  Article  Google Scholar 

  226. [226]

    Sulak L. et al., Nucl. Instrum.. Methods, 161 (1979) 203.

    ADS  Article  Google Scholar 

  227. [227]

    Learned J. G., Phys. Rev. D, 19 (1979) 3293.

    ADS  Article  Google Scholar 

  228. [228]

    Urick R. J., Sound Propagation in the Sea (Peninsula Publishing) 1982.

    Google Scholar 

  229. [229]

    Descamps F. et al., Proc. 31st ICRC, Lodz, Poland (2009), arXiv:0908.3251.

    Google Scholar 

  230. [230]

    Niess V. and Bertin V., Astropart. Phys., 28 (2007) 366.

    ADS  Article  Google Scholar 

  231. [231]

    Karg T. et al., J. Mod. Phys. Int., A1S1 (2006) 212.

    Article  Google Scholar 

  232. [232]

    Perkin J. et al., Nucl. Instrum. Methods A, 604-1S (2009) S193.

    Article  Google Scholar 

  233. [233]

    Vandenbroucke J. et al., Nucl. Instrum. Methods A, 604-1S (2009) S164.

    Article  Google Scholar 

  234. [234]

    Descamps F. et al., Nucl. Instrum. Methods A, 604-1S (2009) S175.

    Article  Google Scholar 

  235. [235]

    Lethinen N. G. et al., Astropart. Phys., 17 (2002) 279.

    ADS  Article  Google Scholar 

  236. [236]

    Vandenbroucke J., et al., Astrophys. J., 612 (2005) 301.

    ADS  Article  Google Scholar 

  237. [237]

    Kurahashi N. et al., Nucl. Instrum. Methods A, 604-1S (2009) S127.

    ADS  Article  Google Scholar 

  238. [238]

    Lahman R. et al., Nucl. Instrum. Methods A, 604-1S (2009) S158.

    ADS  Article  Google Scholar 

  239. [239]

    Nosengo N., Nature, 426 (2009) 560.

    Article  Google Scholar 

  240. [240]

    Riccobene G. et al., Nucl. Instrum. Methods A, 604-1S (2009) S149.

    Article  Google Scholar 

  241. [241]

    The P. AUGER COLLABORATION, Phys. Rev. Lett., 100-21 (2008) 211101.

    Google Scholar 

  242. [242]

    Abbasi R. U. et al., Astrophys. J., 684 (2008) 790.

    ADS  Article  Google Scholar 

  243. [243]

    Martens K. et al., arXiv:0707.4417.

  244. [244]

    The P. Auger Collaboration, Proc. 31st ICRC, Lodz, Poland (2009).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Sapienza.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sapienza, P., Riccobene, G. High-energy neutrino astronomy. Riv. Nuovo Cim. 32, 591–650 (2009). https://doi.org/10.1393/ncr/i2010-10050-5

Download citation

Keywords

  • Neutrino, muon, pion, and other elementary particles
  • cosmic rays
  • Cosmic rays (including sources, origin, acceleration, and interactions)
  • Cosmic-ray interactions
  • Cherenkov detectors