Dielectric and conductometric properties of highly heterogeneous colloidal systems

Summary

This review focuses on the behavior of highly heterogeneous colloidal systems under the influence of an external, frequency-dependent, electric field. Heterogeneous systems, which lie between bulk and molecularly dispersed systems, consist, in a simple meaning of the word, of a dispersed phase distributed uniformly in a finely divided state in a dispersion medium and represent a class of materials characterized by an extremely large surface-to-volume ratio. In these systems, the nanoscopic or mesoscopic size of the components leads to a situation where their original properties can be only partially important, or may be even completely lost, and, on the contrary, where the effects associated to the interface dominate. Moreover, at least in the most relevant systems both from a theoretical and practical point of view, the interfaces are often charged. This makes dielectric spectroscopy methods, which probe the charge distribution in the different regions of the system, particularly suitable to investigate the electrical properties of this class of materials. We shall limit ourselves to a discussion of relatively simple heterogeneous systems, such as polymeric colloidal particles dispersed in an electrolyte solution, biological cell suspensions and, finally, microemulsions. Each of these systems represents a family of colloids used as an example to outline some of their most important characteristics and to evidentiate a number of phenomena that are directly linked to the presence of a huge surfaces. For each of the above-stated systems, we will review the complex phenomenology they present, giving particular emphasis to the effects totally or partially induced by the presence of a large interface.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Kremer F. and Schonhals A., Broadband Dielectric Spectroscopy (Springer, Berlin) 2003.

    Google Scholar 

  2. [2]

    Havriliak S. jr. and Havriliak S. J., Dielectric and Mechanical Relaxation in Materials (Hanser, Munich) 1997.

    Google Scholar 

  3. [3]

    Grant E. H., Sheppard R. J. and South J. P., Dielectric Behavior of Biological Molecules in Solution (Clarendon Press, Oxford) 1978.

    Google Scholar 

  4. [4]

    Hasted J. B., Aqueous Dielectrics (Chapman and Hall, London) 1973.

    Google Scholar 

  5. [5]

    Chiabrera A., Nicolini C. and Schwan H. P., Interactions between Electromagnetic fields and Cells (Plenum Press, New York) 1985.

    Google Scholar 

  6. [6]

    Pethig R. and Kell D., Phys. Med. Biol., 32 (1987) 933.

    Article  Google Scholar 

  7. [7]

    Hedvig P., Dielectric Spectroscopy of Polymers (Hadam Hilger, Bristol) 1977.

    Google Scholar 

  8. [8]

    Feldman Yu., Andrianov A., Polygalov I., Eromolina I., Romanishev G., Zuev Yu. and Milgotin B., Rev. Sci. Instrum., 67 (1996) 3208.

    ADS  Article  Google Scholar 

  9. [9]

    Bertolini D., Cassettari M., Salvetti G., Tombari E. and Veronesi S., Rev. Sci. Instrum., 62 (1991) 450.

    ADS  Article  Google Scholar 

  10. [10]

    Mashimo S., Umehara T., Ota T., Kuwabara S., Shinyashiki N. and Yagihara S., J. Mol. Liq., 36 (1987) 135.

    Article  Google Scholar 

  11. [11]

    Böttcher B. and Bordewijk P., Theory of Elctric Polarization (Elsevier, Amsterdam) 1978.

    Google Scholar 

  12. [12]

    Delacey E. H. B. and White L. R., J. Chem. Soc., Faraday Trans., 2 (1981) 2007.

    Article  Google Scholar 

  13. [13]

    O’brien S. and White L. R., J. Chem.. Soc., Faraday Trans. 2, 74 (1978) 1607.

    Article  Google Scholar 

  14. [14]

    Liu Y. C. and Keh H. J., Langmuir, 14 (1998) 1560.

    Article  Google Scholar 

  15. [15]

    Chew W. C. and Sen P. N., J. Chem.. Phys., 77 (1982) 4683.

    ADS  Article  Google Scholar 

  16. [16]

    Rosen L. A. and Saville D. A., J. Colloid Interface Sci., 140 (1990) 82.

    ADS  Article  Google Scholar 

  17. [17]

    Havriliak S. and Negami S., Polymer, 8 (1967) 161.

    Article  Google Scholar 

  18. [18]

    Debye P., Polar Molecules (Chem. Catalog. Co., New York) 1929.

    Google Scholar 

  19. [19]

    Cole K. S. and Cole H. R., J. Chem. Phys., 9 (1941) 341.

    ADS  Article  Google Scholar 

  20. [20]

    Davidson D. W. and Cole R. H., J. Chem.. Phys., 18 (1950) 1417.

    ADS  Article  Google Scholar 

  21. [21]

    Raicu V., Phys. Rev. E, 60 (1999) 4677.

    ADS  Article  Google Scholar 

  22. [22]

    Jonscher A. K., Nature, 267 (1977) 673.

    ADS  Article  Google Scholar 

  23. [23]

    Macedo P. B., Moynihan C. T. and Bose R., Phys. Chem. Glasses, 13 (1972) 171.

    Google Scholar 

  24. [24]

    Hilfer R. (Editor), Applications of Fractional Calculus in Physics (World Scientific, London) 2000.

    Google Scholar 

  25. [25]

    Metzler R. and Klafter J., Phys. Rep., 339 (2000) 1.

    ADS  Article  Google Scholar 

  26. [26]

    Sokolov L. M., Phys. Rev. E, 63 (2001) 011104.

    ADS  Article  Google Scholar 

  27. [27]

    Nigmatullin R. R. and Ryabov Ja. E., Phys. Solid State, 39 (1997) 87.

    ADS  Article  Google Scholar 

  28. [28]

    Weron K. and Klauzer A., Ferroelectrics, 236 (2000) 59.

    Article  Google Scholar 

  29. [29]

    Feldman Y., Puzenko A. and Ryabov Y. E., Chem. Phys., 284 (2002) 139.

    Article  Google Scholar 

  30. [30]

    Ryabov Y. E., Feldman Y., Shinyashiki N. and Yagihara S., J. Chem. Phys., 116 (2002) 8610.

    ADS  Article  Google Scholar 

  31. [31]

    Maxwell J. C., Electricity and Magnetism (Clarendon Press, London) 1892.

    Google Scholar 

  32. [32]

    Hanai T., Electric properties of emulsions, in Emulsion Science, edited by Sherman P. (Academic Press, New York) 1968.

    Google Scholar 

  33. [33]

    Wagner K. W., Arch. Elektrotech, 2 (1914) 371.

    Article  Google Scholar 

  34. [34]

    Hanai T., Kolloid. Z., 171 (1960) 23.

    Article  Google Scholar 

  35. [35]

    Hanai T., Kolloid. Z., 175 (1960) 61.

    Article  Google Scholar 

  36. [36]

    Hanai T., Bull. Inst. Chem. Res. Kyoto Univ., 39 (1961) 341.

    Google Scholar 

  37. [37]

    Trukhan E. M., Sov. Phys. Solid State, 4 (1963) 2560.

    Google Scholar 

  38. [38]

    Eley D., Parfitt G., Perry M. and Taysum D., Trans. Faraday Soc., 49 (1953) 79.

    Article  Google Scholar 

  39. [39]

    Vartanyan A. T., Dokl. Akad. Nauk. SSSR, 143 (1962) 1317.

    Google Scholar 

  40. [40]

    Bonincontro A., Cametti C. and Di Biasio A., J. Phys. D: Appl. Phys., 13 (1980) 1529.

    ADS  Article  Google Scholar 

  41. [41]

    Gao L., Huang J. P. and Yu K. W., Phys. Rev. E, 67 (2003) 021910.

    ADS  Article  Google Scholar 

  42. [42]

    De Loor G. P., Appl. Phys. Res. B, 11 (1965) 310.

    Google Scholar 

  43. [43]

    El Sabeh S. H. M. and Hasted J. B., Proc. R. Soc. London, Ser. B, 66 (1953) 611.

    Article  Google Scholar 

  44. [44]

    Tinga W. R., Voss W. A. G. and Blossey D. F., J. Appl. Phys., 44 (1973) 3897.

    ADS  Article  Google Scholar 

  45. [45]

    De Backer R. and Watillon A., J. Colloid Interface Sci., 43 (1973) 277.

    ADS  Article  Google Scholar 

  46. [46]

    De Backer R. and Watillon A., J. Colloid Interface Sci., 54 (1976) 69.

    ADS  Article  Google Scholar 

  47. [47]

    Schwan H. P., Schwartz G., Maczuk J. and Pauly H., J. Phys. Chem., 66 (1962) 2626.

    Article  Google Scholar 

  48. [48]

    Schwan H. P., Adv. Med. Biol. Phys., 5 (1957) 147.

    Article  Google Scholar 

  49. [49]

    Schwartz G., J. Phys. Chem., 68 (1964) 2407.

    Article  Google Scholar 

  50. [50]

    Schurr J. M., J. Phys. Chem., 68 (1964) 2407.

    Article  Google Scholar 

  51. [51]

    O’konski C. T., J. Phys. Chem., 64 (1960) 605.

    Article  Google Scholar 

  52. [52]

    Delgado A. V., Gonzales-caballero F., Hunter R. J., Koopal L. K. and Lyklema J., Pure Appl. Chem., 77 (2005) 1805.

    Google Scholar 

  53. [53]

    Delgado A. V., Gonzales-Caballero F., Hunter R. J., Koopal L. K. and Lyklema J., J. Colloid Interface Sci., 309 (2007) 194.

    ADS  Article  Google Scholar 

  54. [54]

    Ballario C., Boninconto A. and Cametti C., J. Colloid Interface Sci., 54 (1976) 415.

    ADS  Article  Google Scholar 

  55. [55]

    Ballario C., Boninconto A. and Cametti C., J. Colloid Interface Sci., 63 (1978) 567.

    ADS  Article  Google Scholar 

  56. [56]

    Ballario C., Boninconto A. and Cametti C., J. Colloid Interface Sci., 72 (1979) 304.

    ADS  Article  Google Scholar 

  57. [57]

    Fricke F. and Curtis A., J. Phys. Chem., 40 (1936) 715.

    Article  Google Scholar 

  58. [58]

    Fixman M., J. Chem. Phys., 72 (1980) 5177.

    ADS  Article  Google Scholar 

  59. [59]

    O’brien R. W., Adv. Colloid Interface Sci., 16 (1982) 281.

    Article  Google Scholar 

  60. [60]

    Chew W. C., J. Chem. Phys., 80 (1984) 4541.

    ADS  Article  Google Scholar 

  61. [61]

    Hu Y., Langmuir, 14 (1998) 271.

    Article  Google Scholar 

  62. [62]

    Grosse C. and Foster K. R., J. Phys. Chem., 91 (1987) 6415.

    Article  Google Scholar 

  63. [63]

    Grosse C. and Foster K. R., J. Phys. Chem., 91 (1987) 3073.

    Article  Google Scholar 

  64. [64]

    Grosse C., J. Phys. Chem., 92 (1988) 3905.

    Article  Google Scholar 

  65. [65]

    Dukhin S. S. and Shilov V. N., Dielectric Phenomena and the Double Layer in Disperse Systems and Polyelectrolytes (Kerter Pub. House, Jerusalem) 1974.

    Google Scholar 

  66. [66]

    Chew W. C. and Sen P. N., J. Chem. Phys., 77 (1982) 4683.

    ADS  Article  Google Scholar 

  67. [67]

    Grosse C., J. Phys. Chem., 92 (1988) 3905.

    Article  Google Scholar 

  68. [68]

    Fixman M., J. Chem. Phys., 72 (1980) 5177.

    ADS  Article  Google Scholar 

  69. [69]

    Grosse C., Dielectric properties of suspensions of solid particles, in Encyclopedia of Surface and Colloid Science, edited by Hubbard A. T. (Marcel Dekker, New York) 2002.

    Google Scholar 

  70. [70]

    Roldan-toro R. and Solier J. D., J. Colloid Interface Sci., 274 (2004) 76.

    ADS  Article  Google Scholar 

  71. [71]

    Tirado M. and Grosse C., J. Colloid Interface Sci., 298 (2006) 973.

    ADS  Article  Google Scholar 

  72. [72]

    Hanai T., Zhang H. Z., Sekine K., Asaka K. and Asami K., Ferroelectrics, 86 (1988) 191.

    Article  Google Scholar 

  73. [73]

    Asami K., Hanai T. and Koizumi N., Biophys. J., 31 (1980) 251.

    Article  Google Scholar 

  74. [74]

    Asami K., Hanai T. and Koizumi N., Jpn. J. Appl. Phys., 19 (1980) 359.

    ADS  Article  Google Scholar 

  75. [75]

    Asami K., Prog. Polym. Sci., 27 (2002) 1617.

    Article  Google Scholar 

  76. [76]

    Lasic D., Trends Biotechnol., 16 (1998) 307.

    Article  Google Scholar 

  77. [77]

    Lian T. and Ho R. J., J. Pharm. Sci., 90 (2001) 667.

    Article  Google Scholar 

  78. [78]

    Moses M. A., Brem H. and Langer R., Cancer Cell, 4 (2003) 337.

    Article  Google Scholar 

  79. [79]

    Gregoriadis G. and Florence A. T., Drugs, 45 (1993) 15.

    Article  Google Scholar 

  80. [80]

    Banerjee R., J. Biomater. Appl., 16 (2000) 3.

    Article  Google Scholar 

  81. [81]

    Tirado M., Grosse C., Schrader W. and Kaatze U., J. Non-Cryst. Solids, 305 (2002) 373.

    ADS  Article  Google Scholar 

  82. [82]

    Grosse C., Barchini R., Halloy C. and Pottel R., J. Non-Cryst. Solids, 305 (2002) 373.

    Article  Google Scholar 

  83. [83]

    Grosse C., Relaxation mechanisms of homogeneous particles and cells suspended in aqueous electrolyte solutions, in Interfacial Electrokinetis and Electrophoresis, edited by Delgado A. V. (Marcel Dekker, New York) 2001.

    Google Scholar 

  84. [84]

    Kaatze U., Dittrich A., Gopel K. and Pottel R., Chem. Phys. Lipids, 35 (1984) 279.

    Article  Google Scholar 

  85. [85]

    Kaatze U., Gopel K. and Pottel R., J. Phys. Chem., 89 (1985) 2565.

    Article  Google Scholar 

  86. [86]

    Schrader W. and Kaatze U., J. Phys. Chem. B, 105 (2001) 6266.

    Article  Google Scholar 

  87. [87]

    Kaatze U., Henze R. and Pottel R., Chem. Phys. Lipids, 25 (1979) 149.

    Article  Google Scholar 

  88. [88]

    Henze R., Chem. Phys. Lipids, 27 (1979) 165.

    Article  Google Scholar 

  89. [89]

    Kaatze U. and Henze R., Ber. Bunsenges. Phys. Chem., 84 (1980) 1102.

    Article  Google Scholar 

  90. [90]

    Kaatze U., Muller S. C. and Heibl H., Chem. Phys. Lipids, 27 (1980) 263.

    Article  Google Scholar 

  91. [91]

    Kaatze U., Lautscham K. and Pottel R., J. Mol. Liq., 28 (1984) 249.

    Article  Google Scholar 

  92. [92]

    De Luca F., Cametti C., Naglieri A., Bordi F., Misasi R. and Sorice M., Langmuir, 15 (1999) 2493.

    Article  Google Scholar 

  93. [93]

    Cametti C., De Luca F., Macri M. A., Maraviglia B., Misasi R., Sorice M., Pavan A., Garofalo T., Pontieri G. M., Bordi F. and Zimatore G., Colloids Surf. B, 7 (1996) 39.

    Article  Google Scholar 

  94. [94]

    Simons K. and Ikonen E., Nature, 387 (1997) 569.

    ADS  Article  Google Scholar 

  95. [95]

    Munro S., Cell, 115 (2003) 377.

    Article  Google Scholar 

  96. [96]

    Hoeber R., Arch. Ges. Physiol., 133 (1910) 237.

    Article  Google Scholar 

  97. [97]

    Hoeber R., Arch. Ges. Physiol., 148 (1912) 189.

    Article  Google Scholar 

  98. [98]

    Schwan H. P., Electrical properties of tissue and cell suspensions, in Advances in Biological and Medical Physics, Vol. 5 (Academic Press, New York) 1957.

  99. [99]

    Schwan H. P. and Carstensen E. L., Science, 125 (1957) 985.

    ADS  Article  Google Scholar 

  100. [100]

    Foster K. R. and Schwan H. P., Crit. Rev. Biomed. Eng., 17 (1989) 25.

    Google Scholar 

  101. [101]

    Feldman Yu., Ermolina I. and Hayashi Y., IEEE Trans. Diel. Elect. Insul., 10 (2003) 728.

    Article  Google Scholar 

  102. [102]

    Smith G., Duffy A. P., Shen J. and Olliff C. J., J. Pharm. Sci, 84 (1995) 1029.

    Article  Google Scholar 

  103. [103]

    Bai W., Zhao K. S. and Asami K., Biophys. Chem., 122 (2006) 136.

    Article  Google Scholar 

  104. [104]

    Asami K., Hanai T. and Koizumi N., Biophys. J., 31 (1980) 215.

    ADS  Article  Google Scholar 

  105. [105]

    Asami K., Takahashi Y. and Takashima S., Biochem. Biophys. Acta, 1010 (1989) 49.

    Article  Google Scholar 

  106. [106]

    Ballario C., Bonincontro A., Cametti C., Rosi A. and Sportelli L., Z. Naturforsch, 39c (1984) 160.

    Article  Google Scholar 

  107. [107]

    Ballario C., Bonincontro A., Cametti C., Rosi A. and Sportelli L., Z. Naturforsch, 39c (1984) 1163.

    Article  Google Scholar 

  108. [108]

    Ballario C., Bonincontro A., Cametti C., Rosi A. and Sportelli L., Int. J. Radiat. Biol., 51 (1987) 934.

    Google Scholar 

  109. [109]

    Bonincontro A., Cametti C., Hausman R. E., Indovina P. L. and Santini M. T., Biochim. Biophys. Acta, 903 (1987) 89.

    Article  Google Scholar 

  110. [110]

    Bonincontro A., Cametti C., Rosi A. and Sportelli L., J. Membr. Sci., 41 (1989) 345.

    Article  Google Scholar 

  111. [111]

    Bordi F., Cametti C. and Di Biasio A., Bioelectrochem. Bioenerg., 22 (1989) 135.

    Article  Google Scholar 

  112. [112]

    Bordi F., Cametti C., Misasi R., De Persio R. and Zimatore G., Eur. Biophys. J., 26 (1997) 215.

    Article  Google Scholar 

  113. [113]

    Ermolina I., Polevaya Yu. and Feldman Yu., Eur. Biophys. J., 29 (2000) 141.

    Article  Google Scholar 

  114. [114]

    Asami K. and Yamaguchi T., Ann. Biomed. Eng., 27 (1999) 35.

    Article  Google Scholar 

  115. [115]

    Lisin R., Ginzburg B. Z., Schlesinger M. and Feldman Yu., Biochem. Biophys. Acta, 1280 (1996) 34.

    Article  Google Scholar 

  116. [116]

    Hayashi Y., Livshits L., Caduff A. and Feldman Yu., J. Phys. D: Appl. Phys., 36 (2003) 369.

    ADS  Article  Google Scholar 

  117. [117]

    Polevaya Yu., Ermolina I., Schlesinger E., Ginzburg B. Z. and Feldman Yu., Biochim. Biophys. Acta, 1419 (1999) 257.

    Article  Google Scholar 

  118. [118]

    Bordi F., Cametti C., Rosi A. and Calcabrini A., Biochim. Biophys. Acta, 1153 (1992) 77.

    Article  Google Scholar 

  119. [119]

    Asami K., Takahashi Y. and Takashima S., Biochem. Biophys. Acta, 1010 (1994) 49.

    Article  Google Scholar 

  120. [120]

    Donath E., Egger M. and Patsushenko V. P., Bioelectrochem. Bioenerg., 23 (1990) 337.

    Article  Google Scholar 

  121. [121]

    Gabriel K., Bioelectrochemistry, 52 (2000) 1.

    Article  Google Scholar 

  122. [122]

    Gabriel C., Gabriel S. and Corthout E., Phys. Med. Biol., 41 (1996) 2231.

    Article  Google Scholar 

  123. [123]

    Gabriel F., Lau R. W. and Gabriel C., Phys. Med. Biol., 41 (1996) 2271.

    Article  Google Scholar 

  124. [124]

    Johnson C., Numerical Solutions of Partially Differential Equations by the Finite Element Methods (Cambridge University Press, Cambridge) 1987.

    Google Scholar 

  125. [125]

    Brebbia C. A., The Boundary Element Method for Engineeers (Pentech. Press, London) 1984.

    Google Scholar 

  126. [126]

    Sekine S., Phys. Med. Biol., 41 (1996) 2271.

    Article  Google Scholar 

  127. [127]

    Lockwood E. H., A Book of Curves (Cambridge University Press, Cambridge) 1967.

    Google Scholar 

  128. [128]

    Di Biasio A. and Cametti C., Bioelectrochemistry, 71 (2007) 149.

    Article  Google Scholar 

  129. [129]

    Asami K., J. Phys. D: Appl. Phys., 39 (2006) 492.

    ADS  Article  Google Scholar 

  130. [130]

    Green N. G. and Jones T. B., J. Phys. D: Appl. Phys., 40 (2007) 78.

    ADS  Article  Google Scholar 

  131. [131]

    Ramos A., Suzuki D. H. O. and Marques J. L. B., Bioelectrochemistry, 38 (2005) 27.

    Google Scholar 

  132. [132]

    Ramos A., Raizer A. and Marques J. L. B., Bioelectrochemistry, 59 (2003) 73.

    Article  Google Scholar 

  133. [133]

    Markx G. H. and Davey C. L., Enzyme Microbial Tech., 25 (1999) 161.

    Article  Google Scholar 

  134. [134]

    Huang Y., Hölzel R., Pethig R. and Wang X. B., Phys. Med. Biol., 37 (1992) 1499.

    Article  Google Scholar 

  135. [135]

    Fuhr G., Arnold G. M., Hagedorn R., Muller T., Benecke W., Wagner B. and Zimmernann U., Biochem. Biophys. Acta, 1108 (1992) 215.

    Article  Google Scholar 

  136. [136]

    Fuhr G., Schnelle T., Hagedorn R. and Shirley S. G., Cell Eng. Mol. Eng., 1 (1995) 47.

    Google Scholar 

  137. [137]

    Markx G. H., Talary M. S. and Pethig R., J. Biotechnol., 32 (1994) 29.

    Article  Google Scholar 

  138. [138]

    Markx G. H., Dyda P. A. and Pethig R., J. Biotechnol., 51 (1996) 175.

    Article  Google Scholar 

  139. [139]

    Gascoyne P. R. C., Wang X. B., Huang Y. and Becker F. F., IEEE Trans. Ind. Appl., 33 (1997) 670.

    Article  Google Scholar 

  140. [140]

    Arnold W. M., Zimmermann U., Pauli W., Benzig M. and Ahlers J., Biochem. Biophys. Acta, 942 (1988) 83.

    Article  Google Scholar 

  141. [141]

    Solans C. and Kunieda H. (Editors), in Industrial Applications of Microemulsions (Marcel Dekker, New York) 1997.

    Google Scholar 

  142. [142]

    Binks B. P. (Editor), in Modern Aspects of Emulsion Science (The Royal Society of Chemistry, London) 1998.

    Google Scholar 

  143. [143]

    Bourrel M. and Schechter R. S., in Microemulsions and Related Systems (Marcel Dekker, New York) 1988.

    Google Scholar 

  144. [144]

    Chen S. H., Rouch J., Sciortino F. and Tartaglia P., J. Phys.: Condens. Matter, 6 (1994) 10855.

    ADS  Google Scholar 

  145. [145]

    Grest G. S., Webman I., Safran S. A. and Bug A. R. L., Phys. Rev. A, 33 (1986) 2842.

    ADS  Article  Google Scholar 

  146. [146]

    Jada A., Lang J. and Zana R., J. Phys. Chem., 94 (1990) 381.

    Article  Google Scholar 

  147. [147]

    Eicke H. F., Borkovec M. and Das-gupta B., J. Phys. Chem., 93 (1989) 10.

    Article  Google Scholar 

  148. [148]

    Kallay N. and Chittofrati A., J. Phys. Chem., 94 (1990) 4755.

    Article  Google Scholar 

  149. [149]

    Kallay N., Tomic A. and Chittofrati A., Colloid Polym. Sci., 270 (1992) 194.

    Article  Google Scholar 

  150. [150]

    Hall D. G., J. Phys. Chem., 94 (1990) 492.

    Article  Google Scholar 

  151. [151]

    Halle B. and Bjorling M., J. Phys. Chem., 103 (1995) 1655.

    Article  Google Scholar 

  152. [152]

    Tomic A. and Kallay N., J. Phys. Chem., 96 (1992) 3874.

    Article  Google Scholar 

  153. [153]

    Bordi F., Cametti C., Di Biasio A. and Onori G., Prog. Colloid Polym. Sci., 110 (1998) 208.

    Article  Google Scholar 

  154. [154]

    Stauffer D. and Aharony A., Introduction to Percolation Theory (Taylor and Francis, London) 1994.

    Google Scholar 

  155. [155]

    van Dijk M. A., Phys. Rev. Lett., 55 (1985) 1003.

    ADS  Article  Google Scholar 

  156. [156]

    Hilfiker R., Heicke H. F. and Geiger S. P., Colloids Surfaces, 50 (1990) 295.

    Article  Google Scholar 

  157. [157]

    Mukhofadhyay L., Bhattacharya P. H., Moulik S. and Furler G., J. Colloid Interface Sci, 105 (1995) 378.

    Google Scholar 

  158. [158]

    Boned C., Peyrelasse J. and Saidi Z., Phys. Rev. E, 47 (1993) 468.

    ADS  Article  Google Scholar 

  159. [159]

    Saidi Z., Mathew C., Peyrelasse J. and Boned C., Phys. Rev. A, 42 (1990) 872.

    ADS  Article  Google Scholar 

  160. [160]

    Feldman Yu., Kozlovich N., Nir I. and Garti N., Phys. Rev. E, 51 (1995) 478.

    ADS  Article  Google Scholar 

  161. [161]

    Feldman Yu., Kozlovich N., Alexandrov Y., Nigmatullin R. and Ryabov Ya., Phys. Rev. E, 54 (1996) 5420.

    ADS  Article  Google Scholar 

  162. [162]

    Feldman Yu., Kozlovich N., Nir I., Garti N., Archipov V., Idiatullin Z., Zuev Y. and Fedotov V., J. Phys. Chem., 100 (1996) 3745.

    Article  Google Scholar 

  163. [163]

    Bug A. L. R., Safran S. A., Grest G. S. and Webman I., Phys. Rev. Lett., 55 (1985) 1986.

    ADS  Article  Google Scholar 

  164. [164]

    Cametti C., Codastefano P., Di Biasio A., Tartaglia P. and Chen S. H., Phys. Rev. A, 40 (1989) 1962.

    ADS  Article  Google Scholar 

  165. [165]

    Bordi F., Cametti C., Rouch J., Sciortino F. and Tartaglia P., I. Phys.: Condens. Matter, 19 (1996) 8.

    Google Scholar 

  166. [166]

    Di Biasio A., Cametti C., Tartaglia P., Rouch J. and Chen S. H., Phys. Rev. E, 47 (1993) 4258.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Cametti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cametti, C. Dielectric and conductometric properties of highly heterogeneous colloidal systems. Riv. Nuovo Cim. 32, 185–260 (2009). https://doi.org/10.1393/ncr/i2009-10044-4

Download citation

Keywords

  • Colloids
  • Dielectric properties of liquids
  • Dielectric constant
  • Complex fluids and colloidal systems