Frequency combs applications and optical frequency standards

Summary

A laser frequency comb allows the conversion of the very rapid oscillations of visible light of some 100’s of THz down to frequencies that can be handled with conventional electronics, say below 100 GHz. This capability has enabled the most precise laser spectroscopy experiments yet that allowed to test quantum electrodynamics, to determine fundamental constants and to search for possible slow changes of these constants. Using an optical frequency reference in combination with a laser frequency comb has made it possible to construct all optical atomic clocks, that are about to outperform the current cesium atomic clocks.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Hall J. L., IEEE Sel. Top. Quantum Electron., 6 (2000) 1136.

    ADS  Article  Google Scholar 

  2. [2]

    Udem Th. et al., in Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium, Besançon France, IEEE catalog no. 99CH36313 (1999), pp. 602–625.

    Google Scholar 

  3. [3]

    Reichert J. et al., Opt. Commun., 172 (1999) 59.

    ADS  Article  Google Scholar 

  4. [4]

    Reichert J. et al., Phys. Rev. Lett., 84 (2000) 3232.

    ADS  Article  Google Scholar 

  5. [5]

    Diddams S. A. et al., Phys. Rev. Lett., 84 (2000) 5102.

    ADS  Article  Google Scholar 

  6. [6]

    Jones D. J. et al., Science, 288 (2000) 635.

    ADS  Article  Google Scholar 

  7. [7]

    Holzwarth R. et al., Phys. Rev. Lett., 85 (2000) 2264.

    ADS  Article  Google Scholar 

  8. [8]

    Udem Th., Holzwarth R. and Hänsch T. W., Nature, 416 (2002) 233.

    ADS  Article  Google Scholar 

  9. [9]

    Oskay W. H. et al., Phys. Rev. Lett., 97 (2006) 020801.

    ADS  Article  Google Scholar 

  10. [10]

    Takamoto M. et al., Nature, 435 (2005) 321.

    ADS  Article  Google Scholar 

  11. [11]

    Gill P. and Margolis H., Physics World, 18 May issue (2005) 35.

    Google Scholar 

  12. [12]

    High Resolution Spectroscopy of Hydrogen, in The Hydrogen Atom, edited by Bassani G. F., Inguscio M. and Hänsch T. W. (Springer Verlag, Berlin, Heidelberg, New York) 1989, pp. 93–102.

    Google Scholar 

  13. [13]

    Niering M. et al., Phys. Rev. Lett., 84 (2000) 5496.

    ADS  Article  Google Scholar 

  14. [14]

    de Beauvoir B. et al., Eur. Phys. Lett. D, 12 (2000) 61.

    ADS  Article  Google Scholar 

  15. [15]

    Udem Th. et al., Phys. Rev. Lett., 82 (1999) 3568.

    ADS  Article  Google Scholar 

  16. [16]

    Gerginov V. et al., Phys. Rev. A, 73 (2006) 032504.

    ADS  Article  Google Scholar 

  17. [17]

    Bize S. et al., Phys. Rev. Lett., 90 (2003) 150802.

    ADS  Article  Google Scholar 

  18. [18]

    Peik E. et al., Phys. Rev. Lett., 93 (2004) 170801.

    ADS  Article  Google Scholar 

  19. [19]

    Zimmermann M. et al., Laser Phys., 15 (2005) 997.

    Google Scholar 

  20. [20]

    Kourogi M. et al., IEEE J. Quantum Electron., 31 (1995) 2120.

    ADS  Article  Google Scholar 

  21. [21]

    Brothers L. R. and Wong N. C., Opt. Lett., 22 (1997) 1015.

    ADS  Article  Google Scholar 

  22. [22]

    Imai K. et al., IEEE J. Quantum Electron., 34 (1998) 1998.

    Google Scholar 

  23. [23]

    Spence D. E., Kean P. N. and Sibbett W., Opt. Lett., 16 (1991) 42.

    ADS  Article  Google Scholar 

  24. [24]

    Diels J. C. and Rudolph W., Ultrashort Laser Pulse Phenomena (Elsevier, Amsterdam, Heidelberg, Tokyo) 2006.

    Google Scholar 

  25. [25]

    Eckstein J. N., High Resolution Spectroscopy using Multiple Coherent Pulses (Thesis, Stanford University, USA) 1978.

    Google Scholar 

  26. [26]

    Bassani G. F., Inguscio M. and Hänsch T. W. (Editors) Frequency Standards in the Optical Spectrum, in The Hydrogen Atom, (Springer Verlag, Berlin, Heidelberg, New York) 1989, pp. 123–133.

    Google Scholar 

  27. [27]

    Holzwarth R. et al., Appl. Phys. B, 73 (2001) 269.

    ADS  Article  Google Scholar 

  28. [28]

    Udem Th. et al., Opt. Lett., 24 (1999) 881.

    ADS  Article  Google Scholar 

  29. [29]

    Diddams S. A. et al., Opt. Lett., 27 (2002) 58.

    ADS  Article  Google Scholar 

  30. [30]

    Ma L. S. et al., Science, 303 (2004) 1843.

    ADS  Article  Google Scholar 

  31. [31]

    Stenger J. and Telle H. R., Opt. Lett., 25 (2000) 1553.

    ADS  Article  Google Scholar 

  32. [32]

    Krausz F. et al., IEEE J. Quantum Electron. 28 (1992) 2097.

    ADS  Article  Google Scholar 

  33. [33]

    Hasegawa A. and Tappert F., Appl. Phys. Lett., 23 (1973) 142.

  34. [34]

    Agrawal G. P., Nonlinear Fiber Optics (Academic Press, New York) 2001.

    Google Scholar 

  35. [35]

    Sutter D. H. et al., Opt. Lett., 24 (1999) 631.

    ADS  Article  Google Scholar 

  36. [36]

    Morgner U. et al., Opt. Lett., 24 (1999) 411.

    ADS  Article  Google Scholar 

  37. [37]

    Siegman A. E., Lasers (University Science Books, Mill Valley Ca USA) 1986.

    Google Scholar 

  38. [38]

    Bramwell S. R., Kane D. M. and Ferguson A. I., Opt. Commun., 56 (1985) 112.

    ADS  Article  Google Scholar 

  39. [39]

    Hollberg L. et al., see fig. 9 in IEEE J. Quantum Electron., 37 (2001) 1502.

    ADS  Article  Google Scholar 

  40. [40]

    Rush D. W., Ho P. T. and Burdge G. L., Opt. Commun., 52 (1984) 41.

    ADS  Article  Google Scholar 

  41. [41]

    Bartels A. et al., Opt. Lett., 29 (2004) 1081.

    ADS  Article  Google Scholar 

  42. [42]

    Swann W. C. et al., Opt. Lett., 31 (2006) 3046.

    ADS  Article  Google Scholar 

  43. [43]

    Knight J. C. et al., Opt. Lett., 21 (1996) 1547.

    ADS  Article  Google Scholar 

  44. [44]

    Ranka J. K. et al., Opt. Lett., 25 (2000) 25.

    ADS  Article  Google Scholar 

  45. [45]

    Russell P. St. J., Science, 299 (2003) 358.

    ADS  Article  Google Scholar 

  46. [46]

    Birks T. A., Wadsworth W. J. and Russell P. St. J., Opt. Lett., 25 (2000) 1415.

    ADS  Article  Google Scholar 

  47. [47]

    Holzwarth R. et al., Laser Phys., 11 (2001) 1100.

    Google Scholar 

  48. [48]

    Bartels A., Dekorsy T. and Kurz H., Opt. Lett., 24 (1999) 996.

    ADS  Article  Google Scholar 

  49. [49]

    Hoi M. et al., Phys. Rev. Lett., 96 (2006) 243401.

    ADS  Article  Google Scholar 

  50. [50]

    Corwn K. L. et al., Phys. Rev. Lett., 90 (2003) 113904.

    ADS  Article  Google Scholar 

  51. [51]

    Holman K. W. et al., Opt. Lett., 28 (2003) 851.

    ADS  Article  Google Scholar 

  52. [52]

    Holzwarth R., PhD thesis Ludwig-Maximilians-Universität Munich (2001).

  53. [53]

    Dudley J. M. et al., J. Opt. Soc. Am. B, 19 (2002) 765.

    ADS  Article  Google Scholar 

  54. [54]

    Ell R. et al., Opt. Lett., 26 (2001) 373.

    ADS  Article  Google Scholar 

  55. [55]

    Fortier T. M. et al., Opt. Lett., 28 (2003) 2198.

    ADS  Article  Google Scholar 

  56. [56]

    Matos L. et al., Opt. Lett., 29 (2004) 1683.

    ADS  Article  Google Scholar 

  57. [57]

    Fortier T. M. et al., Opt. Lett., 31 (2006) 1011.

    ADS  Article  Google Scholar 

  58. [58]

    Morgner U. et al., Phys. Rev. Lett., 86 (2001) 5462.

    ADS  Article  Google Scholar 

  59. [59]

    Diddams S. A. et al., IEEE J. Quantum Electron. 9 (2003) 1072.

    Article  Google Scholar 

  60. [60]

    Fuji T. et al., Opt. Lett., 30 (2005) 332.

    ADS  Article  Google Scholar 

  61. [61]

    Nelson L. E. et al., Appl. Phys. B, 65 (1997) 277.

    ADS  Article  Google Scholar 

  62. [62]

    Kubina P. et al., Opt. Express, 13 (2005) 909.

    ADS  Article  Google Scholar 

  63. [63]

    Adler F. et al., Opt. Express, 12 (2004) 5872.

    ADS  Article  Google Scholar 

  64. [64]

    McFerran J. J. et al., Opt. Lett., 31 (2006) 1997.

    ADS  Article  Google Scholar 

  65. [65]

    See, for example, Gardener F. M., Phaselock Techniques (John Wiley & Sons, New York) 1979.

    Google Scholar 

  66. [66]

    Walls F. L. and DeMarchi A., IEEE Trans. Instrum. Meas., 24 (1975) 210.

    Article  Google Scholar 

  67. [67]

    Telle H. R., in Frequency Control of Semiconductor Lasers, edited by Ohtsu M. (Wiley, New York) 1996, pp. 137–167.

  68. [68]

    Brabec T., private communication.

  69. [69]

    Haus H. A. and Ippen E. P., Opt. Lett., 26 (2001) 1654.

    ADS  Article  Google Scholar 

  70. [70]

    Xu L. et al., Opt. Lett., 21 (1996) 2008.

    ADS  Article  Google Scholar 

  71. [71]

    Helbing F. W. et al., Appl. Phys. B, 74 (2002) S35.

    ADS  Article  Google Scholar 

  72. [72]

    Witte S. et al., Appl. Phys. B, 78 (2004) 5.

    ADS  Article  Google Scholar 

  73. [73]

    Prevedelli M., Freegarde T. and Hänsch T. W., Appl. Phys. B, 60 (1995) S241.

    Google Scholar 

  74. [74]

    Fischer M. et al., Phys. Rev. Lett., 92 (2004) 230802.

    ADS  Article  Google Scholar 

  75. [75]

    Santarelli G. et al., Phys. Rev. Lett., 82 (1999) 4619.

    ADS  Article  Google Scholar 

  76. [76]

    Uzan J. P., Rev. Mod. Phys., 75 (2003) 403.

    ADS  Article  Google Scholar 

  77. [77]

    Dirac P. A. M., Nature (London), 139 (1937) 323.

    ADS  Article  Google Scholar 

  78. [78]

    Webb J. K. et al., Phys. Rev. Lett., 87 (2001) 091301.

    ADS  Article  Google Scholar 

  79. [79]

    Murphy M. T., Webb J. K. and Flambaum V. V., Mon. Not. R. Astron. Soc., 345 (2003) 609.

    ADS  Article  Google Scholar 

  80. [80]

    Quast R. et al., Astron. Astrophys., 417 (2004) 853.

    Article  Google Scholar 

  81. [81]

    Srianand R. et al., Phys. Rev. Lett., 92 (2004) 121302.

    ADS  Article  Google Scholar 

  82. [82]

    Shlyakhter A. I., Nature, 264 (1976) 340.

    ADS  Article  Google Scholar 

  83. [83]

    Fujii Y. et al., Nucl. Phys. B, 573 (2000) 377.

    ADS  Article  Google Scholar 

  84. [84]

    Lamoreaux S. K. and Torgerson J. R., Phys. Rev. D, 69 (2004) 121701(R).

    ADS  Article  Google Scholar 

  85. [85]

    Murphy M. T. et al., arXiv:astro-ph/0612407v1.

  86. [86]

    Murphy M. T., Webb J. K. and Flambaum V. V., arXiv:astro-ph/0611080 v3.

  87. [87]

    Calmet X. and Fritzsch H., Phys. Lett. B, 540 (2002) 173.

    ADS  Article  Google Scholar 

  88. [88]

    Schneider T., Peik E. and Tamm Chr., Phys. Rev. Lett., 94 (2005) 230801.

    ADS  Article  Google Scholar 

  89. [89]

    Diddams S. A. et al., Science, 293 (2001) 825.

    ADS  Article  Google Scholar 

  90. [90]

    Mohr P. J. and Taylor B. N., Rev. Mod. Phys., 77 (2005) 1.

    ADS  Article  Google Scholar 

  91. [91]

    Gabrielse G. et al., Phys. Rev. Lett., 97 (2006) 030802.

    ADS  Article  Google Scholar 

  92. [92]

    Wicht A. et al., Phys. Scr., T02 (2002) 82.

    ADS  Article  Google Scholar 

  93. [93]

    Cladé P. et al., Phys. Rev. Lett., 96 (2006) 03301.

    Article  Google Scholar 

  94. [94]

    Bradley et al., Phys. Rev. Lett., 83 (1999) 4510.

    ADS  Article  Google Scholar 

  95. [95]

    Pachucki K. and Jentschura U. D., Phys. Rev. Lett., 91 (2003) 113005.

    ADS  Article  Google Scholar 

  96. [96]

    Murphy M. T. et al., sumitted to Mon. Not. R. Astron. Soc.

  97. [97]

    Apolonski A. et al., Phys. Rev. Lett., 85 (2000) 740.

    ADS  Article  Google Scholar 

  98. [98]

    Kienberger R. et al., Nature, 427 (2004) 817.

    ADS  Article  Google Scholar 

  99. [99]

    Baltuška A. et al., Nature, 421 (2003) 611.

    ADS  Article  Google Scholar 

  100. [100]

    Wahlström C. G. et al., Phys. Rev. A, 48 (1993) 4709.

    ADS  Article  Google Scholar 

  101. [101]

    Brabec T. and Krausz F., Rev. Mod. Phys., 72 (2000) 545.

    ADS  Article  Google Scholar 

  102. [102]

    Eden J. G., Prog. Quantum Electron., 28 (2004) 197.

    ADS  Article  Google Scholar 

  103. [103]

    Paulus G. G. et al., Phys. Rev. Lett., 85 (2000) 253004.

    Google Scholar 

  104. [104]

    Seres J. et al., Nature, 433 (2005) 596.

    ADS  Article  Google Scholar 

  105. [105]

    Goulielmakis E. et al., Science, 305 (2004) 1267.

    ADS  Article  Google Scholar 

  106. [106]

    Gerginov V. et al., Opt. Lett., 30 (2005) 1734.

    ADS  Article  Google Scholar 

  107. [107]

    Fendel P. et al., Opt. Lett., 32 (2007) 701.

    ADS  Article  Google Scholar 

  108. [108]

    Baklanov Ye. F. and Chebotayev V. P., Appl. Phys. Lett., 12 (1977) 97.

    ADS  Google Scholar 

  109. [109]

    Meshulach D. and Silberberg Y., Nature, 396 (1998) 239.

    ADS  Article  Google Scholar 

  110. [110]

    Eckstein J., Ferguson A. I. and Hänsch T. W., Phys. Rev. Lett., 40 (1978) 847.

    ADS  Article  Google Scholar 

  111. [111]

    Snadden M. J. et al., Opt. Commun., 125 (1996) 70.

    ADS  Article  Google Scholar 

  112. [112]

    Marian A. et al., Science, 306 (2004) 2063.

    ADS  Article  Google Scholar 

  113. [113]

    Fortier T. M. et al., Phys. Rev. Lett., 97 (2006) 163905.

    ADS  Article  Google Scholar 

  114. [114]

    Witte S. et al., Science, 307 (2005) 400.

    ADS  Article  Google Scholar 

  115. [115]

    Cavalieri S. et al., Phys. Rev. Lett., 89 (2002) 133002.

    ADS  Article  Google Scholar 

  116. [116]

    Zinkstok R. Th. et al., Phys. Rev. A, 73 (2006) 061801(R).

    ADS  Article  Google Scholar 

  117. [117]

    Gohle Ch. et al., Nature, 436 (2005) 234.

    ADS  Article  Google Scholar 

  118. [118]

    Jones R. J., Moll K. Thorpe M. and Ye J., Phys. Rev. Lett., 94 (2005) 193201.

    ADS  Article  Google Scholar 

  119. [119]

    Barnes J. A. et al., IEEE Trans. Instrum. Meas., 20 (1971) 105.

    Article  Google Scholar 

  120. [120]

    Webster S. A. et al., Phys. Rev. A., 65 (2002) 052501.

    ADS  Article  Google Scholar 

  121. [121]

    See, for example, contributions of Madej A. A., Bernard J. E., Riehle F. and Helmcke J., in Frequency Measurement and Control, edited by Luiten A. N. (Springer Verlag, Berlin, Heidelberg, New York) 2001.

  122. [122]

    Evenson K. M. et al., Appl. Phys. Lett., 22 (1973) 192.

    ADS  Article  Google Scholar 

  123. [123]

    Peik E., Schneider T. and Tamm Chr., J. Phys. B, 39 (2006) 145.

    ADS  Article  Google Scholar 

  124. [124]

    Brusch A. et al., Phys. Rev. Lett., 96 (2006) 103003.

    ADS  Article  Google Scholar 

  125. [125]

    Quinn T. J., Metrologia, 40 (2003) 103.

    ADS  Article  Google Scholar 

  126. [126]

    Editor’s note: Documents concerning the new definition of the metre, Metrologia, 19 (1984) 163.

    Google Scholar 

  127. [127]

    Quinn T. J., Metrologia, 30 (1993/1994) 523.

    ADS  Article  Google Scholar 

  128. [128]

    Quinn T. J., Metrologia, 36 (1999) 211.

    ADS  Article  Google Scholar 

  129. [129]

    Wineland D. J. et al., Phys. Rev. A, 36 (1987) 2220.

    ADS  Article  Google Scholar 

  130. [130]

    Blatt R., Gill P. and Thompson R. C., J. Mod. Opt., 39 (1992) 193.

    ADS  Article  Google Scholar 

  131. [131]

    Madej A. A. and Bernard J. E., Frequency Measurement and Control: Topics in Applied Physics, edited by A. N. Luiten, 79 (2001) 153.

    ADS  Article  Google Scholar 

  132. [132]

    Riehle F., Frequency Standards: Basics and Applications (Wiley-VCH, Weinheim) 2004.

    Google Scholar 

  133. [133]

    Dehmelt H., Bull. Am. Phys. Soc., 20 (1975) 60.

    Google Scholar 

  134. [134]

    Wineland D. J. and Dehmelt H., Bull. Am. Phys. Soc., 20 (1975) 637.

    Google Scholar 

  135. [135]

    Wineland D. J. et al., Opt. Lett., 5 (1980) 245.

    ADS  Article  Google Scholar 

  136. [136]

    Nagourney W., Sandberg J. and Dehmelt H., Phys. Rev. Lett., 56 (1986) 2797.

    ADS  Article  Google Scholar 

  137. [137]

    Itano W. M., J. Res. Natl. Inst. Stand. Technol., 105 (2000) 829.

    Article  Google Scholar 

  138. [138]

    Dubé P. et al., Phys. Rev. Lett., 95 (2005) 033001.

    ADS  Article  Google Scholar 

  139. [139]

    Tamm Chr. et al., to be published in IEEE Trans. Instrum. Meas.

  140. [140]

    Margolis H. S. et al., Science, 306 (2004) 1355.

    ADS  Article  Google Scholar 

  141. [141]

    Ito N. et al., Opt. Commun., 109 (1994) 414.

    ADS  Article  Google Scholar 

  142. [142]

    Zibrov A. S. et al., Appl. Phys. B, 59 (1994) 327.

    ADS  Article  Google Scholar 

  143. [143]

    Kersten P. et al., Appl. Phys. B, 68 (1999) 27.

    ADS  Article  Google Scholar 

  144. [144]

    Beausoleil R. G. and Hänsch T. W., Phys. Rev. A, 33 (1986) 1661.

    ADS  Article  Google Scholar 

  145. [145]

    Sterr U. et al., Appl. Phys. B, 54 (1992) 341.

    ADS  Article  Google Scholar 

  146. [146]

    Wilpers G. et al., Phys. Rev. Lett., 89 (2002) 230801.

    ADS  Article  Google Scholar 

  147. [147]

    Sterr U. et al., C. R. Physique, 5 (2005) 845.

  148. [148]

    Sterr U. et al., Phys. Rev. A, 72 (2005) 062111.

    ADS  Article  Google Scholar 

  149. [149]

    Wilpers G., Oaetes C. W. and Hollberg L. W., Appl. Phys. B, 85 (2006) 31.

    ADS  Article  Google Scholar 

  150. [150]

    Sorrentino F. et al., arXiv:physics/0609133 v1 (2006).

  151. [151]

    Itano W. M. et al., Phys. Rev. A, 47 (1993) 3554.

    ADS  Article  Google Scholar 

  152. [152]

    Bordé Ch. J. et al., Phys. Rev. A, 30 (1984) 1836.

    ADS  Article  Google Scholar 

  153. [153]

    Bordé Ch. J., Phys. Lett. A, 30 (1989) 10.

    ADS  Article  Google Scholar 

  154. [154]

    Stoehr H. et al., Opt. Lett., 31 (2006) 736.

    ADS  Article  Google Scholar 

  155. [155]

    Dick G. J., Proceedings of 19th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, Redondo Beach, CA, 1987 (U. S. Naval Observatory) 1987, pp. 133–147.

    Google Scholar 

  156. [156]

    Quessada A. et al., J. Opt. B: Quantum Semiclassical Opt., 5 (2003) S150.

    Article  Google Scholar 

  157. [157]

    Katori H., Ido T. and Kuwata-Gonokami M., J. Phys. Soc. Jpn., 68 (1999) 2479.

    ADS  Article  Google Scholar 

  158. [158]

    Katori H., in Proceedings of the 6th Symposium on Frequency Standards and Metrology, edited by P. Gill (World Scientific, Singapore) 2002, p. 323.

    Google Scholar 

  159. [159]

    Takamoto M. et al., J. Phys. Soc. Jpn., 75 (2006) 104302.

    ADS  Article  Google Scholar 

  160. [160]

    Boyd M. M. et al., Phys. Rev. Lett., 98 (2007) 083002.

    ADS  Article  Google Scholar 

  161. [161]

    Le Targat R. et al., Phys. Rev. Lett., 97 (2006) 130801.

    ADS  Article  Google Scholar 

  162. [162]

    Barber Z. W. et al., Phys. Rev. Lett., 96 (2006) 083002.

    ADS  Article  Google Scholar 

  163. [163]

    Wineland D. J. et al., in Proceedings of the 6th Symposium on Frequency Standards and Metrology, edited by P. Gill (World Scientific, Singapore) 2002, p. 361.

    Google Scholar 

  164. [164]

    Schmidt P. O. et al., Science, 309 (2005) 749.

    ADS  Article  Google Scholar 

  165. [165]

    Peik E. and Tamm Ch., Europhys. Lett., 61 (2003) 161.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Th. Udem.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Udem, T., Riehle, F. Frequency combs applications and optical frequency standards. Riv. Nuovo Cim. 30, 563–606 (2007). https://doi.org/10.1393/ncr/i2007-10027-5

Download citation