Skip to main content
Log in

Flavour dynamics and CP violation in the SM*: A tale in five parts of great successes, little understanding and promise for the future!

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

Our knowledge of flavour dynamics has undergone a “quantum jump” since just before the turn of the millenium: direct CP violation has been firmly established in KL → ππ decays in 1999; the first CP asymmetry outside KL decays has been discovered in 2001 in BdψKs, followed by Bd → π+π, Bd → η'Ks and BK±π±, the latter establishing direct CP violation also in the beauty sector. Furthermore CKM dynamics allows a description of CP insensitive and sensitive B, K and D transitions that is impressively consistent also on the quantitative level. Theories of flavour dynamics that could serve as alternatives to CKM have been ruled out. Yet these novel successes of the Standard Model (SM) do not invalidate any of the theoretical arguments for the incompleteness of the SM. In addition we have also more direct evidence for New Physics, namely neutrino oscillations, the observed baryon number of the Universe, dark matter and dark energy. While the New Physics anticipated at the TeV scale is not likely to shed any light on the SM’s mysteries of flavour, detailed and comprehensive studies of heavy flavour transitions will be essential in diagnosing salient features of that New Physics. Strategic principles for such studies will be outlined. These lectures delivered in 2005 have been updated in particular with respect to the discovery of \({B_s} - {\overline B _s}\) and the strong evidence for \({D^0} - {\overline D ^0}\) oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A more detailed and comprehensive discussion of all aspects of CP violation can be found in: Blgi I. I. and Sanda A. I., CP Violation, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology (Cambridge University Press) 2000.

  2. See Sanda A. I., in Proceedings of the International School of Physics “Enrico Fermi” edited by M. Giorgi, I. Manelli, A. I. Sanda and M. Sozzi, course CLXIII (IOS Press, Amsterdam; SIF, Bologna) 2006, p. 5.

  3. See Ramsey N., in [2], p. 465.

  4. Adler S. L., Phys. Rev., 177 (1969) 2426; Bell J. S.and Jackiw R., Nuovo Cimento, 60 (1969) 47; Bardeen W. A., Phys. Rev., 184 (1969) 1848.

    Article  ADS  Google Scholar 

  5. Glashow S., Illiopolous J. and Maiani L., Phys. Rev. D, 2 (1970) 1285.

    Article  ADS  Google Scholar 

  6. Kobayashi M. and Maskawa T., Prog. Theor. Phys., 49 (1973) 652.

    Article  ADS  Google Scholar 

  7. Jarlskog C.,in CP Violation, edited by Jarlskog C. (World Scientific, Singapore) 1988.

  8. Mohapatra R., Phys. Rev. D, 6 (1972) 203.

    Article  Google Scholar 

  9. Niu K., Mikumo E. and Maeda Y., Prog. Theor. Phys., 46 (1971) 1644.

    Article  ADS  Google Scholar 

  10. For a more detailed description of this fascinating tale, see the lectures by Sozzi M., in [2], p. 175.

  11. Inami T. and Lim C. S., Prog. Theor. Phys., 65 (1981) 297.

    Article  ADS  Google Scholar 

  12. Buchalla G., Buras A. J. and Lautenbacher M. E., Rev. Mod. Phys., 68 (1996) 1125.

    Article  ADS  Google Scholar 

  13. Laurent B. and Roos M., Phys. Lett., 13 (1964) 269; ibidem,, 15 (1964) 104.

    Article  ADS  Google Scholar 

  14. Sakharoy A. D., JETP Lett., 5 (1967) 24.

    ADS  Google Scholar 

  15. Bander M., Silverman D. and Soni A., Phys. Rev. Lett., 43 (1979) 242.

    Article  ADS  Google Scholar 

  16. Carter A. B. and Sanda A. I., Phys. Rev. D, 23 (1981) 1567.

    Article  ADS  Google Scholar 

  17. Bid I. I. and Sanda A. I., Nucl. Phys. B, 193 (1981) 85.

    Article  ADS  Google Scholar 

  18. Hamzaoui C., Rosner J. L. and Sanda A. I., Proceedings of the Fermilab Workshop on High Sensitivity Beauty Physics at Fermilab,editedby Slaughter A. J., Lockyer N. and Schmidt M. (Fermilab) 1987.

    Google Scholar 

  19. Albrecht H. et al., Phys. Lett. B, 192 (1987) 245.

    Article  ADS  Google Scholar 

  20. Bigi I. I., in Proceedings of Les Rencontres de Physique de la Vallee d'Aoste, La Thuile, Italy, 1991; in Proceedings of Les Rencontres de Moriond, Les Arcs, France, 1992.

    Google Scholar 

  21. For a recent review, see, e.g., Buras A., Flavour Physics and CP Violation, hepph/0505175.

  22. See Bloch P., in [2], p. 439.

  23. Bigi I. I. and Sanda A. I., Phys. Lett. B, 625 (2005) 47.

    Article  ADS  Google Scholar 

  24. Sehgal L. M. and Wanninger M., Phys. Rev. D, 46 (1992) 1035; Phys. Rev. D, 46 (1992) 5209 (E); see also the earlier papers: Dolgoy A. D. and Ponomarey L. A., Sov. J. Nucl. Phys., 4 (1967) 262; Majumdar D. P. and Smith J., Phys. Rev., 187 (1969) 2039.

    Article  ADS  Google Scholar 

  25. Bigi I. I. and Sanda A. I., Phys. Lett. B, 466 (1999) 33.

    Article  ADS  Google Scholar 

  26. The OPAL Collaboration (Akerstaff K. {etet al.), Eur. Phys. J. C}, 5} (1998}) 3

    ADS  Google Scholar 

  27. CDF Collaboration, Phys. Rev. D, 61 (2000) 072005.

    Article  Google Scholar 

  28. See Lanceri L., in [2], p. 247.

  29. Parodi F., Rodeau P. and Stocchi A., Nuovo Cimento A, 112 (1999) 833.

    ADS  Google Scholar 

  30. Einstein A., Podolsky B., and Rosen N., Phys. Rev., 47 (1935) 777.

    Article  ADS  Google Scholar 

  31. DO Collaboration (Abazoy V. M. et al.), Phys. Rev. Lett., 97 (2006) 021802.

    Article  ADS  Google Scholar 

  32. CDF Collaboration (Abulencia A. et al.), hep-ex/0609040, which updates the earlier Phys. Rev. Lett., 97 (2006) 062003.

    Article  ADS  Google Scholar 

  33. The Heavy Flavour Averaging Group provides continuously updated experimental numbers on their web site: {rs http://www.slac.stanford.edu/xorg/hfag/ url}

  34. Voloshin M. et al., Sov. J. Nucl. Phys., 46 (1987) 112.

    Google Scholar 

  35. Lenz A., talk given at FPCP04, Daegu, Korea, Oct. 2004, hep-ph/0412007.

    Google Scholar 

  36. Bigi I. I., Phys. Lett. B, 535 (2002) 155.

    Article  ADS  Google Scholar 

  37. Bander M., Silverman D. and Soni A., Phys. Rev. Lett., 43 (1979) 242.

    Article  ADS  Google Scholar 

  38. Bigi I. I., Khoze V. A., Uraltsey N. G. and Sanda A. I., in CP Violation, edited by Jarlskog C. (World Scientific, Singapore) 1988, p. 218.

  39. Keum Y. Y., Li H.-N. and Sanda A. I., Phys. Lett. B, 504 (2001) 6; Phys. Rev. D, 63 (2001) 054008; Li H-N., Mishima S. and Sanda A. I., Phys. Rev. D, 72 (2005) 094005.

    Article  ADS  Google Scholar 

  40. Beneke M., Buchalla G., Neubert M. and Sachrajda C. T., Nucl. Phys. B, 606 (2001) 245; Beneke M., hep-ph/0509297.

    Article  ADS  Google Scholar 

  41. Wolfenstein L., Phys. Rev. D, 43 (1991) 151.

    Article  ADS  Google Scholar 

  42. Uraltsey N., hep-ph/9212233.

  43. Deandrea A. and Polosa A. D., Phys. Rev. Lett., 86 (2001) 216.

    Article  ADS  Google Scholar 

  44. Gardner S. and Meissner Ulf-G., Phys. Rev. D, 65 (2002) 094004.

    Article  ADS  Google Scholar 

  45. Carter A. and Sanda A. I., Phys. Rev. D, 23 (1981) 1567.

    Article  ADS  Google Scholar 

  46. Bigi I. I. and Sanda A. I., Phys. Lett. B, 211 (1985) 213.

    Article  ADS  Google Scholar 

  47. Gronau M. and Wyler D., Phys. Lett. B, 265 (1991) 172; Dunietz I., Phys. Lett. B, 270 (1991) 75.

    Article  ADS  Google Scholar 

  48. See, for example: Grossman Y. et al., Phys. Rev. D, 68 (2003) 015004.

    Article  Google Scholar 

  49. Bigi I. I., hep-ph/0509153.

  50. Ali A., Lunghi E., Greub C. and Her G., Phys. Rev. D, 66 (2002) 034002; Ghinculov A., Hurth T., Isidori G. and Yao Y.-P., Nucl. Phys. B, 685 (2004) 351.

    Article  ADS  Google Scholar 

  51. Ali A., Ball P., Handoko L. T. and Hiller G., Phys. Rev. D, 61 (2000) 074024.

    Article  ADS  Google Scholar 

  52. Pirjol D., hep-ph/0207095.

  53. Melikhov D., Nikitin N. and Simula S., Phys. Lett. B, 442 (1998) 381.

    Article  ADS  Google Scholar 

  54. Buchalla G. and Buras A., Nucl. Phys. B, 400 (1993) 225.

    Article  ADS  Google Scholar 

  55. Buchalla G., Hiller G. and Isidori G., Phys. Rev. D, 63 (2001) 014015.

    Article  ADS  Google Scholar 

  56. Grossman Y., Ligeti Z. and Nardi E., Nucl. Phys. B, 465 (1996) 369; Melikhov D., Nikitin N. and Simula S., Phys. Lett. B, 428 (1998) 171.

    Article  ADS  Google Scholar 

  57. Miki T., Miura T. and Tanaka M., hep-ph/0210051.

  58. Uraltsev N., Phys. Lett. B, 585 (2004) 253; ibidem, 545 (2002) 337.

    Article  ADS  Google Scholar 

  59. For a recent update see: Lenz A., Nierste U., hep-ph/0612167.

  60. See Dolgov A., in [2], p. 409.

  61. See lectures by Gomez-Cadenas J. J., this volume, p. 373.

  62. Bigi I. I., Shifman M. and Uraltsev N. G., Annu. Rev. Nucl. Part. Sci., 47 (1997) 591.

    Article  ADS  Google Scholar 

  63. Uraltsev N., in Boris Ioffe Festschrift At the Frontier of Particle Physics/Handbook of QCD, edited by Shifman M. (World Scientific, Singapore) 2001, hep-ph/0010328.

  64. Buchmüller O. and Flächer H., hep-ph/0507253.

  65. Bigi I. I., Dokshitzer Y., Khoze V., Kühn J. and Zerwas P., Phys. Lett. B, 181 (1986) 157.

  66. Chibisov B., Dikeman R., Shifman M. and Uraltsev N., Int. J. Mod. Phys. A, 12 (1997) 2075.

  67. Bigi I. I., Uraltsev N. and Zwicky R., hep-ph/0511158.

  68. Bigi I. I., Uraltsev N. G. and Vainshtein A., Phys. Lett. B, 293 (1992) 430.

  69. Uraltsev N. G., Phys. Lett. B, 501 (2001) 86.

  70. Bigi I. I. and Mannel Th., hep-ph/0212021.

  71. Bigi I. I. and Uraltsev N. G., Int. J. Mod. Phys. A, 16 (2001) 5201; Bigi I. I., Uraltsev N. G., Shifman M. and Vainshtein A., Phys. Rev. D, 56 (1997) 4017.

    Article  ADS  Google Scholar 

  72. Melnikov K. and Yelkhovsky A., Phys. Rev. D, 59 (1999) 114009; Beneke M. and Signer A. Phys. Lett. B, 471 (1999) 233; Hoang A., Phys. Rev. D, 61 (2000) 034005; Kühn J. H. and Steinhauser M., Nucl. Phys. B, 619 (2001) 588; ibidem,, 640 (2002) 415(E).

    Article  ADS  Google Scholar 

  73. Bigi I. I., Shifman M., Uraltsev N. G. and Vainshtein A., Phys. Rev. D, 52 (1995) 196.

    Article  ADS  Google Scholar 

  74. Bigi I. I. and Uraltsev N. G., Nucl. Phys. B, 423 (1994) 33; Z. Phys. C, 62 (1994) 623.

    Article  ADS  Google Scholar 

  75. Voloshin M., Phys. Lett. B, 385 (1996) 369.

    Article  ADS  Google Scholar 

  76. Bianco S., Fabbri F., Bigi I. and Benson D., Riv. Nuovo Cimento, 26, Nos. 7-8 (2003).

    Google Scholar 

  77. Bigi I. I. and Uraltsev N. G., Phys. Lett. B, 280 (1992) 271.

    Article  ADS  Google Scholar 

  78. Bigi I., Blok B., Shifman M., Uraltsev N. and Vainshtein A., in B Physics, edited by Stone S.}, 2nd edition (World Scientific, Singapore) 1994.

  79. Uraltsev N., Phys. Lett. B, 376 (1996) 303; Pirjol D. and Uraltsev N., Phys. Rev. D, 59 (1999) 034012.

    Article  ADS  Google Scholar 

  80. See also: Colangelo P. and de Fazio F., Phys. Lett. B, 387 (1996) 371; di Plerro M.}, Sachrajda C. and Michael C., Phys. Lett. B, 468 (1999) 143.

    Article  ADS  Google Scholar 

  81. Heavy Flavor Averaging Group, hep-ex/0505100.

  82. CDF note 7867.

  83. Bigi I. I., Nucl. Instrum. Methods Phys. Res. A, 351 (1994) 240; Phys. Lett. B, 371 (1996) 105; Beneke M. and Buchalla G., Phys. Rev. D, 53 (1996) 4991.

    Article  ADS  Google Scholar 

  84. Bellini G., Bigi I. I. and Dornan P. J., Phys. Rep., 289 (1997) 1.

    Article  ADS  Google Scholar 

  85. Gabbiani F., Onishchenko A. and Petrov A., Phys. Rev. D, 70 (2004) 094031.

    Article  ADS  Google Scholar 

  86. Voloshin M. B., hep-ph/0004257.

  87. Benson D. et al., Nucl. Phys. B}, 665 (2003) 367.

    Article  ADS  Google Scholar 

  88. The BaBar Collaboration (Aubert B. et al.), Phys. Rev. Lett., 93 (2004) 011803 hep-ex/0404017.

    Article  ADS  Google Scholar 

  89. Translations into other schemes can be found in Battaglia M. et al., hep-ph/0304132.

  90. Battaglia M. et al., Phys. Lett. B, 556 (2003) 41.

    Article  ADS  Google Scholar 

  91. The DELPHI Collaboration (Abdallah J. et al.), Eur. Phys. J. C, 45 (2006) 35.

    Article  ADS  Google Scholar 

  92. Bauer C. et al., Phys. Rev. D, 70 (2004) 094017.

    Article  ADS  Google Scholar 

  93. Okamoto M., PoS(LAT2005)013, Plenary talk presented at Lattice 2005, Dublin, July 25-30, 2005; hep-lat/0510113.

    Google Scholar 

  94. Bigi I. I. and Uraltsey N., Phys. Lett. B, 579 (2004) 340.

    Article  ADS  Google Scholar 

  95. Benson D., Bigi I. I. and Uraltsey N., hep-ph/0410080, Nucl. Phys. B, 710 (2005) 371.

    Article  ADS  Google Scholar 

  96. Bauer C., Invited talk given at Heavy Quarks & Leptons 2004, Puerto Rico, June 1-5, 2004, hep-ph/0408100.

  97. {rs http://elvis.phys.lsu.edu/svoboda/superk.html url}.

  98. Bigi I. I. and Uraltsey N. G., Nucl. Phys. B, 592 (2001) 92.

    Article  ADS  Google Scholar 

  99. Falk A. et al., Phys. Rev. D, 65 (2002) 054034.

    Article  ADS  Google Scholar 

  100. Falk A. et al., Phys. Rev. D, 69 (2004) 114021.

    Article  ADS  Google Scholar 

  101. The BELLE Collaboration (Abe K. {etet al.)}, BELLE-CONF-0701.

  102. Staric M. (for the BELLE Collaboration), talk given at the XLII Rencontres de Moriond, La Thuile, March 10-17, 2007.

  103. The BaBar Collaboration (Aubert B. {etet al.)}, hep-ex/0703020.

  104. Asner D., talk given at the final meeting of the workshop 'Flavour in the Era of the LHC', CERN, March 26, 2007.

  105. Golowich E., Pakyasa S., Petroy A., hep-ph/0610039.

  106. FOCUS Collaboration (Link J.M. {etet al.), Phys. Lett. B}, 622} (2005}) 2

    Article  ADS  Google Scholar 

  107. Grossman Y., Kagan A. and Nir Y., Phys. Rev. D, 75 (2007) 036008.

    Article  ADS  Google Scholar 

  108. The usual tale that the Dark Ages of the Middle Ages were overcome by the Copernican Revolution being born like the goddess Athena jumping out of the head of her father Zeus fully developed and in full armor is unfair to the Middle Ages. Yet more importantly it completely overlooks the immeasurable service to Human culture rendered by Arab Science. For the truly committed student I recommend reading: Djebbar A., Une histoire de la science arabe (Editions du Seuil) 2001.

    Google Scholar 

  109. Kühn J. H. and Mirkes E., Phys.Lett. B, 398 (1997) 407.

    Article  ADS  Google Scholar 

  110. Bigi I. I. and Sanda A. I., Phys. Lett. B, 625 (2005) 47.

    Article  ADS  Google Scholar 

  111. See Giorgi M., in [2], p. 569; Bona M. et al., report INFN/AE-07/2, SLAC-R-856, LAL 07-15, to be found at {rs http:///www.pi.infn.it/SuperB/?q=CDR url}.

Download references

Acknowledgments

I want to thank my colleagues Profs. M. Giorgi, I. Mannelli, A. I. Sanda, F. Costantini and M. Sozzi for directing and organizing this school in such a splendid and most enjoyable setting and inviting me to it. it has been my second participation in a varenna summer school, and i have enjoyed it even more than the first time. i am also grateful to b. alzani and her team — r. brigatti, g. bianohi-bazzi and l. corengia— for the smooth day-to-day running of the school and help in many practical matters. i have benefitted from the hospitality extended to me at lal, orsay, and lpth, universite de paris sud, orsay, while i was preparing and later writing up these lectures. this work was supported by the nsf under grant number phy-0355098.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigi, I.I. Flavour dynamics and CP violation in the SM*: A tale in five parts of great successes, little understanding and promise for the future!. Riv. Nuovo Cim. 30, 1–93 (2007). https://doi.org/10.1393/ncr/i2007-10017-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2007-10017-7

Navigation