Skip to main content

Advertisement

Log in

New imaging devices and image processing challenges

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

Electronic light sensors transform the energy of the incoming electromagnetic wave into some form of electrical energy, usually via the excitation of electrons (e.g. photoelectric effect). The photodetection process in a semiconductor material consists of interaction of a photon and an electron (absorption) and collection of the generated electron-hole pair in the external circuit, see fig. 1. The efficiency of the photodetector depends on how many photons are absorbed and detected. For the simple band-to-band absorption process from fig. 1, the quantum efficiency depends on the absorption coefficient α and the length of the detector area along the path of the incident light l. The fraction of the light absorbed in the detector is: 1 — exp[—αl]. Some of the incoming light is reflected by the surface of the detector, but by using special antireflection coatings that could be below 5%. The absorption coefficient in general depends on the light wavelength. Later on we shall see how that property was used in designing some modern image sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waser R. (Editor), in Nanoelectronics and Information Technology (Wiley-VCH) 2003, pp. 813–819.

    Google Scholar 

  2. Magnan P., Nucl. Instrum. Methods Phys. Res. A, 504 (2003) 199.

    Article  ADS  Google Scholar 

  3. Wong H.-S., IEEE Trans. Electron. Dev., 43 (1996) 2131.

    Article  ADS  Google Scholar 

  4. A new (third) type of light detection cells was recently discovered in the eye retina, which contains melanopsin protein. It is believed that this type of cell does not participate in image sensing, but is responsible for detecting bright light and then for telling our bodies that it is daytime. In addition these photoreceptors have a function in regulating pupil size, the ability to keep us awake and alert and it is also likely that they are responsible for resetting our internal body clocks to local time following a flight across time-zones. See: {rs http://www.imperial.ac.uk/P3896.htm url}.

  5. Montag E., course no. 1050-724: Vision and Psychophysics.

  6. Kaiser P. K., The Joy of Visual Perception: A Web Book, {rs http://www.yorku.ca/eye/ url}.

  7. Pye D., Phys. World, June issue (2003) p. 56.

    Google Scholar 

  8. Nirenberg S., Carcieri S. M., Jacobs A. L. and Latham P. E., Nature, 411 (2001) 698.

    Article  ADS  Google Scholar 

  9. {rs http://www.foveon.com/X3 tech.html url}.

  10. Lyon R. F. and Hubel P. M.,in IS& T/SID Tenth Color Imaging Conference, Scottsdale, Arizona November 12, 2002, Vol. 10, pp. 349–355.

    Google Scholar 

  11. Peumans P., Yakimov A. and Forrest S. R., J. Appl. Phys., 93 (2003) 3693.

    Article  ADS  Google Scholar 

  12. Peumans P., Üchida S. and Forrest S. R., Nature, 425 (2003) 158.

    Article  ADS  Google Scholar 

  13. Gregg B. A. and Hanna M. C., J. Appl. Phys., 93 (2003) 3605.

    Article  ADS  Google Scholar 

  14. Wang J., Gudiksen M. S., Duan X., Cui Y. and Lieber C. M., Science, 293 (2001) 1455.

    Article  ADS  Google Scholar 

  15. Lefebvre J., Fraser J. M., Finnie P. and Homma Y., Phys. Rev. B, 69 (2004) 075403.

    Article  ADS  Google Scholar 

  16. Chen P., Wu X., Sun X., Lin J., Ji W. and Tan K. L., Phys. Rev. Lett., 82 (1999) 2548.

    Article  ADS  Google Scholar 

  17. Wu C.-Y., Li Y.-K. and Tu C. C., IEEE-NANO 2003, Third IEEE Conference on Nanotechnology, Vol. 2, (2003) pp. 3–765.

    ADS  Google Scholar 

  18. Ramachandra Rao C. N., Kulkarni G. U., John Thomas P. and Edwards P. P., Chem. Soc. Rev., 29 (2000) 27.

    Article  Google Scholar 

  19. Brust M., Schiffrin D. J., Kiely C. J., Bethell D., Nichols R. J., Satherley J., Johnson K. and Haiss W., Phantoms Newslett., 6 (2002) 4.

    Google Scholar 

  20. Templeton A. C., Chen S., Gross S. M. and Murray R. W., Langmuir, 15 (1999) 66.

    Article  Google Scholar 

  21. Brust M., Bethell D., Kiely C. J. and Schiffrin D. J., Langmuir, 14 (1998) 5425.

    Article  Google Scholar 

  22. Andres R. P., Bielefeld J. D., Henderson J. I., Kolagnuta V. R., Kubiak C. P., Mahoney W. J. and Osifchin R., Science, 273 (1996) 1690.

    Article  ADS  Google Scholar 

  23. Warner M. G. and Hutchinson J. E., Nature Mater., 2 (2003) 272.

    Article  ADS  Google Scholar 

  24. Brust M. and Kiely C. J., Colloids Surf., 202 (2002) 175.

    Article  Google Scholar 

  25. McMillan R. A., Paavola C. D., Howard J., Chan S. L., Zaluzec N. J. and Trent J. D., Nature Mater., 1 (2002) 247.

    Article  ADS  Google Scholar 

  26. Cunningham D., Martinez J. A. and Moore B. D., Trends in NanoTechnology 2002, 2002.

    Google Scholar 

  27. Kreiner M., Moore B. D. and Parker M. C., Chem. Commun., (2001) 1096.

    Google Scholar 

  28. Moore B. D., Murugesan M. and Martinez-Albertos J.-L., to be published.

  29. Trudeau P.-E., Orozco A., Kwan E. and Dhirani A.-A., J. Chem. Phys., 117 (2002) 3978.

    Article  ADS  Google Scholar 

  30. Ford W. E., Wessels J. and Yasuda A., Tuned multifunctional linker molecules for electronic charge transport through organic-inorganic composite structures and use thereof, European Patent Application 2002 EP 1215205 A1.

    Google Scholar 

  31. Klimov V. I. and Bawendi M. G., MRS Bull., 26 (2001) 998.

    Article  Google Scholar 

  32. Betzig E. and Trautman J. K., Science, 257 (1992) 189.

    Article  ADS  Google Scholar 

  33. Hillenbrand R. and Keilmann F., Appl. Phys. Lett., 80 (2002) 25.

    Article  ADS  Google Scholar 

  34. Michaelis J., Hettich C., Mlynek J. and Sandoghdar V., Nature, 405 (2000) 325.

    Article  ADS  Google Scholar 

  35. Ebbesen T. W., Lezec J. J., Ghaemi H. F., Thio T. and Wolff P. A., Nature, 391 (1998) 667.

    Article  ADS  Google Scholar 

  36. Dyba M. and Hell S. W., Phys. Rev. Lett., 88 (2002) 163901.

    Article  ADS  Google Scholar 

  37. Yablonovitch E., Gmitter T. J. and Leung K. M., Phys. Rev. Lett., 67 (1991) 2295.

    Article  ADS  Google Scholar 

  38. Yablonovitch E., Gmitter T. J., Meade R. D., Rappe A. M., Brommer K. D. and Joannopoulos J. D., Phys. Rev. Lett., 67 (1991) 3380.

    Article  ADS  Google Scholar 

  39. Pendry J. and MacKinnon A., Phys. Rev. Lett., 69 (1992) 2772.

    Article  ADS  Google Scholar 

  40. Joannopoulos J. D., Meade R. D. and Winn J. N., Photonic Crystals: Molding the Flow of Light (Princeton University Press).

  41. Bell P. M., Pendry J. B., Martin Moreno L. and Ward A. J., Comput. Phys. Commun., 85 (1995) 306.

    Article  ADS  Google Scholar 

  42. Smith D. R., Phys. World, May issue (2003), 23.

    Google Scholar 

  43. Maier S. A., Brongersma M. L., Kik P. G., Meltzer S., Requicha A. A. G. and Atwater H. A., Adv. Mater., 13 (2001) 1501.

    Article  Google Scholar 

  44. Maier S. A., Kik P. G., Atwater H. A., Meltzer S., Harel E., Koel B. E. and Requicha A. A. G., Nature Mater., 2 (2003) 229.

    Article  ADS  Google Scholar 

  45. Maier S. A., Kik P. G. and Atwater H. A., Phys. Rev. B, 67 (2003) 205402.

    Article  ADS  Google Scholar 

  46. Hubel D. H., Eye, Brain and Vision (Scientific American Library, New York) 1987.

    Google Scholar 

  47. Zeki S., A Vision of the Brain (Blackwell Science) 1993.

    Google Scholar 

  48. Bruce V., Green P. R. and Georgeson M. A., Visual Perception, Psychology Press (Hove, UK) 1996.

    Google Scholar 

  49. ACE16K: in Proceedings of the 7th IEEE International Workshop on Cellular Neural Networks and Their Applications 2002, pp. 132–139.

  50. Burt P. J., Proc. IEEE, 90 (2001) 1188.

    Article  Google Scholar 

  51. Zavidovique B. Y., Proc. IEEE, 90 (2002) 1094.

    Article  Google Scholar 

  52. Heisele B., Verri A. and Poggio T., Proc. IEEE, 90 (2002) 1164.

    Article  Google Scholar 

  53. Forshaw M., Comput. Graphics, Vision Image Process., 41 (1988) 172.

    Article  Google Scholar 

  54. Cowan J. D. and Bressloff P. C., Proc. SPIE, 4662 (2002) 278.

    Article  ADS  Google Scholar 

  55. Crawley D., Nolic K., Forshaw M., Ackermann J., Videlot C., Nguyen T. N., Wang L. and Sarro P. M., J. Micromechan. Microengin., 13 (2003) 655.

    Article  ADS  Google Scholar 

  56. Nikolic K., Forshaw M. and Compano R., Int. J. Nanosci., 2 (2003) 7.

    Article  Google Scholar 

  57. Peercy P. S., Nature, 406 (2000) 1023.

    Article  Google Scholar 

  58. Semiconductor Industry Association, International Technology Roadmap for Semiconductors (ITRS), edition 2002, {rs http://public/itrs.net url}.

  59. Compano R., Technology Roadmap for Nanoelectronics, European Commission, 2000, {rs http://www.cordis.lu/ist/fetnid.htm url}.

    Google Scholar 

  60. Hutchby J. A., Bourianoff G. I., Zhirnov V. V. and Brewer J. E., IEE Circuits Devices Mag., 18 (2002) 28.

    Article  Google Scholar 

  61. Bourianoff G., COMPUTER, 36 (2003) 44.

    Article  Google Scholar 

  62. Deutsch D., Proc. R. Soc. London, Ser. A, 400 (1985) 96.

    ADS  Google Scholar 

  63. Nielsen M. A. and Chuang I. L., Quantum Computation and Quantum Information (Cambridge University Press) 2000.

    MATH  Google Scholar 

  64. Steane A., Rep. Prog. Phys., 61 (1997) 117.

    Article  ADS  MathSciNet  Google Scholar 

  65. Bennett C. H., Phys. Today, October issue (1995) 24.

    Google Scholar 

  66. Moore G. E., Electronics, 38 (1965) 114.

    Google Scholar 

  67. Hergenrother G. D. et al., 2001 IEDM Proceedings.

    Google Scholar 

  68. INTEL Press Releases, intel.com, 26 November 2001, web address: {rs http://www.intel.com/pressroom/archive/releases/20011126tech.htm url}.

  69. Critchlow D. L., Proc. IEEE, 87 (1999) 659.

    Article  Google Scholar 

  70. Meindl J. D., Chen Q. and Davis J. A., Science, 293 (2001) 2044.

    Article  ADS  Google Scholar 

  71. Zhirnov V. V., Cavin R. K., Hutchby J. A. and Bourianoff G. I., Proc. IEEE, 9 (2003) 1934.

    Article  Google Scholar 

  72. Taur Y. et al., Proc. IEEE, 85 (1997) 486.

    Article  Google Scholar 

  73. Schulz M., Phys. World, 13 (2000) 22.

    Article  Google Scholar 

  74. Joachim C., Gimzewski J. K. and Aviram A., Nature, 208 (2000) 541.

    Article  ADS  Google Scholar 

  75. Heath J. R. and Ratner M. A., Phys. Today, 56 (2003) 43.

    Article  ADS  Google Scholar 

  76. Reed M. A., Zhou C., Muller C. J., Bürgin T. P. and Tour J. M., Science, 278 (1997) 252.

    Article  Google Scholar 

  77. Nitzan A. and Ratner M. A., Science, 300 (2003) 1384.

    Article  ADS  Google Scholar 

  78. Pantelides S. T., Di-Ventra M. and Lang N. D., Physica B, 296 (2001) 72. For a commercial example, see, e.g., {rs http://www.atomasoft.com/nanosim url}.

    Article  ADS  Google Scholar 

  79. Martel R., Wong H.-S. P., Chan K. and Avouris P., 2001 IEDM.

    Google Scholar 

  80. Bachtold A., Hadley P., Nakanishi T. and Dekker C., Science, 294 (2001) 1317.

    Article  ADS  Google Scholar 

  81. Wind S. J., Appenzeller J., Marte R., Derycke V. and Avouris P., Appl. Phys. Lett., 80 (2002) 3817.

    Article  ADS  Google Scholar 

  82. Xiao K. et al., Appl. Phys. Lett., 83 (2003) 150.

    Article  ADS  Google Scholar 

  83. Javey A., Wang Q., Ural A., Li Y. and Dai H., Nano Lett., 2 (2002) 929.

    Article  ADS  Google Scholar 

  84. Collins P. G., Arnold M. S. and Avouris P., Science, 292 (2001) 706.

    Article  ADS  Google Scholar 

  85. Cui J. B., Sordan R., Burghard M. and Kern K., Appl. Phys. Lett., 81 (2002) 3260.

    Article  ADS  Google Scholar 

  86. Ellenbogen J. C. and Love J. C., Proc. IEEE, 88 (2000) 386.

    Article  Google Scholar 

  87. Wada Y., Proc. IEEE, 89 (2001) 1147.

    Article  Google Scholar 

  88. Zhitenev N. B., Erbe A., Meng H. and Bao Z., Nanotechnol., 14 (2003) 254.

    Article  ADS  Google Scholar 

  89. Kagan C. R. et al., Nano Lett., 3 (2003) 119.

    Article  ADS  Google Scholar 

  90. Storm A. J., van Noort J., de Vries S. and Dekker C., Appl. Phys. Lett., 79 (2001) 3881.

    Article  ADS  Google Scholar 

  91. Stutzmann N., Friend R. H. and Sirringhaus H., Science, 299 (2003) 1881.

    Article  ADS  Google Scholar 

  92. Cantatore E., Gelinck G. H. and de Leeuw D. M., Proc. IEEE Bipolar/BiCMOS Circ. Tech. (2002) 167.

    Book  Google Scholar 

  93. Huang Y., Duan X., Cui Y., Lauhon L. J., Kim K.-H. and Lieber C. M., Science, 294 (2001) 1313.

    Article  ADS  Google Scholar 

  94. Yang P., Wu Y. and Fan R., Int. J. Nanoscience, 1 (2002) 1.

    Article  ADS  Google Scholar 

  95. Hu J. and Bando Y., Angew. Chem. (2003) in press.

    Google Scholar 

  96. Cui Y. and Lieber C. M., Science, 291 (2001) 851.

    Article  ADS  Google Scholar 

  97. Cui Y., Zhong Z., Wang D., Wang W. U. and Lieber C. M., Nano Lett., 3 (2003) 149.

    Article  ADS  Google Scholar 

  98. Duan X. F., Niu C. M., Sahi V., Chen J., Parce J. W., Empedocles S. and Goldman J. L., Nature, 425 (2003) 274.

    Article  ADS  Google Scholar 

  99. Chen J. and Konenkamp R., Appl. Phys. Lett., 82 (2003) 4782.

    Article  ADS  Google Scholar 

  100. Ami S. and Joachim C., Nanotechnol., 12 (2001) 44.

    Article  ADS  Google Scholar 

  101. Stadler R., Ami S., Forshaw M. and Joachim C., Nanotechnol., 12 (2001) 350.

    Article  ADS  Google Scholar 

  102. Duerig Ü. et al., Proc. of Trends in Nanotechnology 2003 Conference (2003).

    Google Scholar 

  103. Broekaert T. P. E., Lee W. and Fonstad C. G., Appl. Phys. Lett., 53 (1988) 1545.

    Article  ADS  Google Scholar 

  104. Paul D. J. et al., Appl. Phys. Lett., 77 (2000) 1653.

    Article  ADS  Google Scholar 

  105. Wei Y., Wallace R. M. and Seabaugh A. C., J. Appl. Phys., 81 (1997) 6415.

    Article  ADS  Google Scholar 

  106. Stock J., Malindretos J., Indlekofer K. M., Pottgens M., Forster A. and Luth H., IEEE Trans. Electron Dev., 48 (2001) 1028.

    Article  ADS  Google Scholar 

  107. Reed M. A., Proc. IEEE, 87 (1999) 652.

    Article  Google Scholar 

  108. Spataru C. D. and Budau P., J. Phys. Condens. Matter, 14 (2002) 4995.

    Article  ADS  Google Scholar 

  109. Ancona M. G., J. Appl. Phys., 79 (1996) 526.

    Article  ADS  Google Scholar 

  110. Likharev K. K., Proc. IEEE, 87 (1999) 606.

    Article  Google Scholar 

  111. Wasshuber C., Kosina H. and Selberherr S., IEEE Trans. Computer-Aided Design Integrated Circuits and Systems, 16 (1997) 937; wasshuber c., 1997 Ph.D. Thesis, TU Wien, (Österreichischer Kunst- und Kulturverlag. Web-address: http://homei.gte.net/kittypaw/simon.htm.

    Article  Google Scholar 

  112. Fonseca L. R. C., Korotkov A. N., Likharev K. K. and Odintsov A. A., J. Appl. Phys., 78 (1995) 3238.

    Article  ADS  Google Scholar 

  113. Chen R. H., Meeting Abstracts, The Electrochemical Society, 96-2 (1996) 576, {rs http://hana.physics.sunysb.edu/set/software/ url}.

    Google Scholar 

  114. Yu Y. S., Lee H. S. and Hwang S. W., J. Korean Phys. Soc., 33 (1998) 5269.

    Google Scholar 

  115. Thompson A. and Wasshuber C., Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware (2000) 109.

    Book  Google Scholar 

  116. Klunder R. H. and Hoekstra J., Proceedings of the SAFE/IEEE Workshop 87 (2000).

  117. Yano K., Ishii T., Sano T., Murai F. and Seki K., Proceedings of IEEE Intl. SolidState Circuits Conf. 266 (1996).

  118. Wasshuber C., Kosina H. and Selberherr S., IEEE Trans. Electron Devices, 45 (1998) 2365.

    Article  ADS  Google Scholar 

  119. Nakajima F., Kumakura K., Motohisa J. and Fukui T., Jpn. J. Appl. Phys., 38 (1999) 415.

    Article  ADS  Google Scholar 

  120. Ramcke T., Rösner W. and Risch L., 1998 Proc. 3rd Workshop on Innovative Circ. and Sys. for NanoElectronics - Nano-EL98, pp. D4/1.

    Google Scholar 

  121. Johnson M., IEEE Spectrum, Feb (2000) 33.

    Google Scholar 

  122. Heinrich B., Can. J. Phys., 8 (2000) 161.

    Article  ADS  Google Scholar 

  123. Cowburn R. P., Phil. Trans. R. Soc. London, Ser. A, 358 (2000) 281.

    Article  ADS  Google Scholar 

  124. Jansen R. et al., J. Appl. Phys., 89 (2001) 7431.

    Article  ADS  Google Scholar 

  125. Parkin S. S. P. et al., J. Appl. Phys., 85 (1999) 5828.

    Article  ADS  Google Scholar 

  126. Boeve et al., IEEE Trans. Magnetics, 35 (1999) 2820.

    Article  ADS  Google Scholar 

  127. {rs http://e-www.motorola.com url} {rs http://www.almaden.ibm.com/st/projects/magneto/index.html url}.

  128. Landauer R., IBM J. Res. Dev., 32 (1988) 306.

    Article  Google Scholar 

  129. Böttiker M., IBM J. Res. Dev., 32 (1988) 317.

    Article  Google Scholar 

  130. Sols F., Macucci M., Ravaioli U. and Hess K., Appl. Phys. Lett., 54 (1989) 350.

    Article  ADS  Google Scholar 

  131. Datta S., Electronic Transport in Mesoscopic Systems (Cambridge University Press) 1997.

    Google Scholar 

  132. Sordan R. and Nikolic K., Appl. Phys. Lett., 68 (1996) 3599.

    Article  ADS  Google Scholar 

  133. del Alamo J. A., Eugster C. C., Hu Q., Melloch M. R. and Rooks M. J., Supperlatt. Microstruct., 23 (1998) 121.

    Article  ADS  Google Scholar 

  134. Hieke K., Wesstrom J. O., Palm T., Stalnacke B. and Stoltz B., Solid State Electron., 42 (1998) 1115.

    Article  ADS  Google Scholar 

  135. Collier C. P. et al., Science, 289 (2000) 1172.

    Article  ADS  Google Scholar 

  136. Donhauser Z. J. et al., Science, 292 (2001) 2303.

    Article  Google Scholar 

  137. Collier C. P. et al., Science, 285 (1999) 391; Kuekes P. J., Williams R. and Heath J. R. U. S., Patent No. US 6,128,214, Oct. 3, 2000, US 6,256,767 B1, July 3, 2001 and US 6,314,019, Nov. 6, 2001.

    Article  Google Scholar 

  138. HP press rel. 9/9/02 {rs http://www.hp.com/hpinfo/newsroom/press/09sep02a.htm url}.

  139. Codd E. F., Cellular Automata (Academic Press, New York and London) 1968.

    MATH  Google Scholar 

  140. Lent C. S. and Tougaw P. D., J. Appl. Phys., 80 (1996) 4722.

    Article  ADS  Google Scholar 

  141. Lent C. S. and Tougaw P. D., Proc. IEEE, 85 (1997) 541.

    Article  Google Scholar 

  142. Porod W. et al., Int. J. Electron., 86 (1999) 549.

    Article  Google Scholar 

  143. Cowburn R. P. and Welland M. E., Science, 287 (2000) 1466.

    Article  ADS  Google Scholar 

  144. Likharev K. K. and Semenov V. K., IEEE Trans. Appl. Supercond., 1 (1991) 3.

    Article  ADS  Google Scholar 

  145. Brock D. K., Track E. K. and Rowell J. M., IEEE Spectrum, 37 (2000) 4046.

    Article  Google Scholar 

  146. Orlando T. et al., Phys. Rev. B, 60 (1999) 15398.

    Article  ADS  Google Scholar 

  147. Mooij J. E., Orlando T. P., Levitov L., Tian L., van der Waal C. H. and Lloyd S., Science, 285 (1999) 1036.

    Article  Google Scholar 

  148. Jonker P. and Han J., 2000 Proceedings of CAMP2000, Fifth IEEE Int. Workshop on Computer Architectures for Machine Perception 69.

    Book  Google Scholar 

  149. Nikolic K., Berzon D. and Forshaw M., NanoTechnol., 12 (2001) 38.

    Article  ADS  Google Scholar 

  150. For example, it is possible to develop digital signal processing (DSP) chips which, when combined with a PC controller and extra memory, are just about able to mimic the performance of a mouse's visual system.

  151. Koch C., Biophysics of Computation: Information Processing in Single Neurons (Oxford University Press, New York and Oxford) 1999.

    Google Scholar 

  152. Meindl J. D., Chen Q. and Davis J. A., Science, 293 (2001) 2044.

    Article  ADS  Google Scholar 

  153. Kish L. B., Phys. Lett. A, 305 (2002) 144.

    Article  ADS  Google Scholar 

  154. Sadek A. S., Nikolic K. and Forshaw M., Nanotechnology, 15 (2004) 192.

    Article  ADS  Google Scholar 

  155. Nikolic K., Sadek A. and Forshaw M., Nanotechnology, 13 (2002) 357.

    Article  ADS  Google Scholar 

  156. Sadek A., Nikolic K. and Forshaw M., 3D Nanocomputing Architectures and Implementations, edited by Crawley D., Nikolic K. and Forshaw M. (IOP Publishing) 2004.

  157. Gattabigio M., Iannaccone G. and Macucci M., Phys. Rev. B, 65 (2002) 115337.

    Article  ADS  Google Scholar 

  158. Let Ne be the expected (average) number of electrons per pulse. If electron correlation effects are ignored (see, e.g., [158]) then the distribution is binomial or, for values of Negreater than about 50, the distribution will be approximately Gaussian with a standard deviation of It turns out that the probability of obtaining an error is not sensitive to the number of devices in a system, or to the system speed. However, it is very sensitive to the value of Ne, the number of electrons in the pulse.

  159. Depledge P. G., IEE Proc., 128 (1981) 257.

    Google Scholar 

  160. Spagocci S. and Fountain T., Electrochem. Soc. Proc., 99 (1999) 354.

    Google Scholar 

  161. von Neumann J., Automata Studies, edited by SHANNON C. E. and McCarthy J. (Princeton University Press, Princeton, N.J.) 1955, pp. 43–98.

  162. Heath J. R., Kuekes P. J., Snider G. S. and Williams R. S., Science, 280 (1998) 1716.

    Article  Google Scholar 

  163. Lach J., Mangione-Smith W. H. and Potkonjak M., IEEE Trans. VLSI, 6 (1998) 212.

    Article  Google Scholar 

  164. Mitra S., Saxena N. R. and McCluskey E. J., IEEE Trans. Reliability, 49 (2000) 285.

    Article  Google Scholar 

  165. Forshaw M., Nikolic K. and Sadek A., EC ANSWERS Project (MELARI 28667) Third Year Report 2001, {rs http://ipga.phys.ucl.ac.uk/research/answers url}.

    Google Scholar 

  166. Xilinx Advanced Product Specification for Virtex-II FPGAs: April 2001 {rs www.xilinx.com url}.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolić, K. New imaging devices and image processing challenges. Riv. Nuovo Cim. 29, 1–51 (2006). https://doi.org/10.1393/ncr/i2007-10016-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2007-10016-8

Navigation