Stem Cell Reviews

, Volume 1, Issue 3, pp 215–223 | Cite as

Stem cells and mammary cancer in mice

Original Article


I have used the paradigm of mammary cancer induction by the mouse mammary tumor virus (MMTV) to illustrate the body of evidence that supports the hypothesis that mammary epithelial stem/progenitor cells represent targets for oncogenic transformation. Further, it is argued that this is not a special case applicable only to MMTV-induced mammary cancer, because MMTV acts as an environmental mutagen producing random interruptions in the somatic DNA of infected cells by insertion of proviral DNA copies. In addition to disrupting the host genome, the proviral DNA also influences gene expression through its associated enhancer sequences over significant inter-genome distances. Genes commonly affected by MMTV insertion in multiple individual tumors include the Wnt genes, the fibroblast growth factor (FGF) gene family, and the Notch gene family. All of these gene families are known to play essential roles in stem cell maintenance and behavior in a variety of organs. The MMTV-induced mutations accumulate in cells that are long-lived and possess the properties of stem cells, namely, self-renewal and the capacity to produce divergent epithelial progeny through asymmetric division. The evidence shows that epithelial cells with these properties are present in normal mammary glands, may be infected with MMTV, and become transformed to produce epithelial hyperplasia through MMTV-induced mutagenesis and progress to frank mammary malignancy. Retroviral marking via MMTV proviral insertion demonstrates that this process progresses from a single mammary epithelial cell that possesses all the features ascribed to tissue-specific stem cells.

Index Entries

Stem cell MMTV mammary cancer transplantation mice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burmeister T. Rev Med Virol 2001;11:369–380.PubMedCrossRefGoogle Scholar
  2. 2.
    Stehelin D, Varmus HE, Bishop JM. Bibl Haematol 1975;539–541.Google Scholar
  3. 3.
    Bishop JM. Adv Cancer Res 1982;37:1–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Yamashita YM, Fuller MT, Jones DL. J Cell Sci 2005;118:665–672.PubMedCrossRefGoogle Scholar
  5. 5.
    Theodorou V, Boer M, Weigelt B, Jonkers J, van der Valk M, Hilkens J. Oncogene 2004;23:6047–6055.PubMedCrossRefGoogle Scholar
  6. 6.
    Eblaghie MC, Song SJ, Kim JY, Akita K, Tickle C, Jung HS. J Anat 2004;205:1–13.PubMedCrossRefGoogle Scholar
  7. 7.
    Smith GH, Chepko G. Microsc Res Tech 2001;52:190–203.PubMedCrossRefGoogle Scholar
  8. 8.
    Smith GH, Boulanger CA. Cell Prolif 2003;36:3–15.PubMedCrossRefGoogle Scholar
  9. 9.
    Smith GH, Boulanger CA. In: Adult and Fetal Stem Cells: Handbook of Stem Cells, Lanza R, Blau H, Melton D, et al. (eds). San Diego: Elsevier Academic, 2004; Vol. 2 pp. 257–268.Google Scholar
  10. 10.
    Smith GH, Boulanger CA. Mech Aging Dev 2002;123:1505–1519.PubMedCrossRefGoogle Scholar
  11. 11.
    Sonnenberg A, Daams H, Calafat J, Hilgers J. Cancer Res 1986;46:5913–5922.PubMedGoogle Scholar
  12. 12.
    Smith GH, Medina D. J Cell Sci 1988;90:173–183.PubMedGoogle Scholar
  13. 13.
    Chepko G, Smith GH. Tissue Cell 1997;29:239–253.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith GH, Strickland P, Daniel CW. Cell Tissue Res 2002;310:313–320.PubMedCrossRefGoogle Scholar
  15. 15.
    Gudjonsson T, Villadsen R, Nielse HL, Ronnov-Jessen L, Bissell MJ, Petersen OW. Genes Dev 2002;16:693–706.PubMedCrossRefGoogle Scholar
  16. 16.
    Kamiya K, Gould MN, Clifton KH. Proc Soc Exp Biol Med 1998;219:217–225.PubMedGoogle Scholar
  17. 17.
    Stingl J, Eaves CJ, Zandich I, Emerman JT. Breast Cancer Res Treat 2001;67:93–109.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith GH. Breast Cancer Res Treat 1996;39:21–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Medina D. J Mammary Gland Biol Neoplasia 2000;5:393–407.PubMedCrossRefGoogle Scholar
  20. 20.
    Callahan R, Smith GH. Oncogene 2000;19:992–1001.PubMedCrossRefGoogle Scholar
  21. 21.
    Kordon EC, Smith GH. Development 1998;125:1921–1930.PubMedGoogle Scholar
  22. 22.
    Cairns J. Nature 1975;255:197–200.PubMedCrossRefGoogle Scholar
  23. 23.
    Cairns J. Proc Natl Acad Sci USA 2002;99:10,567–10,570.CrossRefGoogle Scholar
  24. 24.
    Potten CS, Owen G, Booth D. J Cell Sci 2002;115:2381–2388.PubMedGoogle Scholar
  25. 25.
    Smith GH. Development 2005;132:681–687.PubMedCrossRefGoogle Scholar
  26. 26.
    Czarneski J, Rassa JC, Ross SR. Immunol Res 2003;27:469–480.PubMedCrossRefGoogle Scholar
  27. 27.
    DeOme KB, Miyamoto MJ, Osborn RC, Guzman RC, Lum K. Cancer Res 1978;38:2103–2111.PubMedGoogle Scholar
  28. 28.
    DeOme KB, Miyamoto MJ, Osborn RC, Guzman RC, Lum K. Cancer Res 1978;38:4050–4053.PubMedGoogle Scholar
  29. 29.
    Jhappan C, Geiser AG, Kordon EC, et al. EMBO J 1993;12:1835–1845.PubMedGoogle Scholar
  30. 30.
    Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Dev Biol 1995;168:47–61.PubMedCrossRefGoogle Scholar
  31. 31.
    Boulanger CA, Smith GH. Oncogene 2001;20:2264–2272.PubMedCrossRefGoogle Scholar
  32. 32.
    Buggiano V, Schere-Levy C, Abe K, et al. Int J Cancer 2001;92:568–576.PubMedCrossRefGoogle Scholar
  33. 33.
    Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. Development 2002;129:1377–1386.PubMedGoogle Scholar
  34. 34.
    Boulanger CA, Wagner KU, Smith GH. Oncogene 2005;24:552–560.PubMedCrossRefGoogle Scholar
  35. 35.
    Smith GH, Pauley RJ, Socher SH, Medina D. Cancer Res 1978;38:4504–4509.PubMedGoogle Scholar
  36. 36.
    Smith GH, Arthur LA, Medina D. Int J Cancer 1980;26:373–379.PubMedCrossRefGoogle Scholar
  37. 37.
    Drohan WN, Benade LE, Graham DE, Smith GH. J Virol 1982;43:876–884.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Mammary Biology and Tumorigenesis Laboratory, Center for Cancer ResearchNational Cancer InstituteBethesda

Personalised recommendations