Skip to main content
Log in

Tryptamine induces tryptophanyl-tRNA synthetase-mediated neurodegeneration with neurofibrillary tangles in human cell and mouse models

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

The neuropathological hallmarks of Alzheimer’s disease (AD) and other taupathies include neurofibrillary tangles and plaques. Despite the fact that only 2–10% of AD cases are associated with genetic mutations, no nontrasgenic or metabolic models have been generated to date. The findings of tryptophanyl-tRNA synthetase (TrpRS) in plaques of the AD brain were reported recently by the authors. Here it is shown that expression of cytoplasmic-TrpRS is inversely correlated with neurofibrillary degeneration, whereas a nonionic detergent-insoluble presumably aggregated TrpRS is simultaneously accumulated in human cells treated by tryptamine, a metabolic tryptophan analog that acts as a competitive inhibitor of TrpRS. TrpRS-N-terminal peptide self-assembles in double-helical fibrils in vitro. Herein, tryptamine causes neuropathy characterized by motor and behavioral deficits, hippocampal neuronal loss, neurofibrillary tangles, amyloidosis, and glucose decrease in mice. Tryptamine induced the formation of helical fibrillary tangles in both hippocampal neurons and glia. Taken together with the authors’ previous findings of tryptamine-induced nephrotoxicity and filamentous tangle formation in kidney cells, the author’s data indicates a general role of tryptamine in cell degeneration and loss. It is concluded that tryptamine as a component of a normal diet can induce neurodegeneration at the concentrations, which might be consumed along with food. Tryptophan-dependent tRNAtrp aminoacylation catalyzed by TrpRS can be inhibited by its substrate tryptophan at physiological concentrations was demonstrated. These findings indicate that the dietary supplementation with tryptophan as a tryptamine competitor may not counteract the deleterious influence of tryptamine. The pivotal role of TrpRS in protecting against neurodegeneration is suggested, providing an insight into the pathogenesis and a possible treatment of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu-Shakra A. (1992) The modulatory effects of tryptamine and tyramine on the S9-mediated mutagenesis of IQ and MeIQ in Salmonella strain TA 98. Teratog. Carcinog. Mutagen 12, 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Adeghate E. and Parvez H. (2004) The effect of diabetes mellitus on the morphology and physiology of monoamine oxidase in the pancreas. Neurotoxicology 25, 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Anderson G. M., Gerner R. H., Cohen D. J., and Fairbanks L. (1984) Central tryptamine turnover in depression, schizophrenia, and anorexia: measurement of indoleacetic acid in cerebrospinal fluid. Biol. Psychiatry 19, 1427–1435.

    PubMed  CAS  Google Scholar 

  • Arpi M., Vancanneyt M., Swings J., and Leisner J. J. (2003) Six cases of Lactobacillus bacteraemia: identification of organisms and antibiotic susceptibility and therapy. Scand. J. Infect. Dis. 35, 404–408.

    Article  PubMed  Google Scholar 

  • Arriagada P. V., Growdon J. H., Hedley-Whyte E. T., and Hyman B. T. (1992) Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology 42, 631–639.

    PubMed  CAS  Google Scholar 

  • Badria F. A. (2002) Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J. Med. Food 5, 153–157.

    Article  PubMed  CAS  Google Scholar 

  • Bailey S. R., Menzies-Gow N. J., Marr C. M., and Elliott J. (2004) The effects of vasoactive amines found in the equine hindgut on digital blood flow in the normal horse. Equine Vet. J. 36, 267–372.

    Article  PubMed  CAS  Google Scholar 

  • Bardsley W. G., Solano-Munoz F., Wright A. J., and McGinlay P. B. (1983) Inhibition of enzyme-catalysed reactions by excess substrate. A theoretical and Monte Carlo study of turning points in v(S) graphs. J. Mol. Biol. 169, 597–617.

    Article  PubMed  CAS  Google Scholar 

  • Biedler J., Helson L., and Spengler B. A. (1973) Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 33, 2643–2652.

    PubMed  CAS  Google Scholar 

  • Bover-Cid S., Hugas M., Izquierdo-Pulido M., and Vidal-Carou M. C. (2001) Amino acid-decarboxylase activity of bacteria isolated from fermented pork sausages. Int. J. Food Microbiol. 66, 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Bremer H. J., Anninos A., and Schultz B. (1996) Amino acid composition of food products used in the treatment of patients with disorders of the amino acid and protein metabolism. Eur. J. Pediatr. 155, S108-S114.

    Article  PubMed  CAS  Google Scholar 

  • Carantoni M., Zuliani G., Munari M. R., D’Elia K., Palmieri E., and Fellin R. (2000) Alzheimer disease and vascular dementia: relationships with fasting glucose and insulin levels. Dement. Geriatr. Cogn. Disord. 11, 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Chanut E., Trouvin J. H., Bondoux, D., Gardier A., Launay J. M., and Jacquot C. (1993) Metabolism of 6-fluoro-DL-tryptophan and its specific effects on the rat brain serotoninergic pathway. Biochem. Pharmacol. 45, 1049–1057.

    Article  PubMed  CAS  Google Scholar 

  • Cherin P. (1999) Treatment of inclusion body myositis. Curr. Opin. Rheumatol. 11, 456–461.

    Article  PubMed  CAS  Google Scholar 

  • Cox B., Lee T. F., and Martin D. (1981) Different hypothalamic receptors mediate 5-hydroxytryptamine- and tryptamine-induced core temperature changes in the rat. Br. J. Pharmacol. 72, 477–482.

    PubMed  CAS  Google Scholar 

  • Davis P. K. and Johnson G. V. W. (1999) Energy metabolism and protein phosphorylation during apoptosis: a phosphorylation study of tau and high-molecular-weight tau in differentiated PC12 cells. Biochem. J. 340, 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Demling J., Langer K., and Mehr M. Q. (1996) Age dependence of large neutral amino acid levels in plasma. Focus on Tryptophan, in The Recent Advances in Tryptophan Research, Filippini, G. A. ed., Plenum Press, New York, pp. 579–582.

    Google Scholar 

  • De Santi S., de Leon M. J., Rusinek H., et al. (2001) Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol. Aging 22, 529–539.

    Article  PubMed  Google Scholar 

  • Dewhurst W. G. (1968) New theory of cerebral amine function and its clinical application. Nature 218, 1130–1133.

    Article  PubMed  CAS  Google Scholar 

  • Domino E. F. and Gahagan S. (1977) In vitro half-life of 14-C-tryptamine in whole blood of drug-free chronic schizophrenic patients. Am. J. Psychiatry 134, 1280–1282.

    PubMed  CAS  Google Scholar 

  • Erkmen O. and Bozkurt H. (2004) Quality characteristics of retailed sucuk (Turkish dry-fermented sausage). Food Technol. Biotechnol. 42, 63–69.

    Google Scholar 

  • Favorova O. O., Zargarova T. A., Rukosuyev V. S., Beresten S. F., and Kisselev L. L. (1989) Molecular and cellular studies of tryptophanyl-tRNA synthetases using monoclonal antibodies. Remarkable variations in the content of tryptophanyl-tRNA synthetase in the pancreas of different mammals. Eur. J. Biochem. 184, 583–588.

    Article  PubMed  CAS  Google Scholar 

  • Fekkes D., van der Cammen T. J., van Loon C. P., et al. (1998) Abnormal amino acid metabolism in patients with early stage Alzheimer dementia. J. Neural Transm. 105, 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Fischer Y., Thomas J., Kamp J., et al., (1995) 5-hydroxytryptamine stimulates glucose transport in cardiomyocytes via a monoamine oxidase-dependent reaction. Biochem. J. 311, 575–583.

    PubMed  CAS  Google Scholar 

  • Fletcher P. J. and Paterson I. A. (1989) A comparison of the effects of tryptamine and 5-hydroxytryptamine on feeding following injection into the paraventricular nucleus of the hypothalamus. Pharmacol. Biochem. Behav. 32, 907–911.

    Article  PubMed  CAS  Google Scholar 

  • Flinn J. P. III and Edwards R. H. (1998) Multiple residues contribute independently to differences in ligand recognition between vesicular monoamine transporters 1 and 2. J. Biol. Chem. 273, 3943–3947.

    Article  Google Scholar 

  • Forsstrom T., Tuominen J., and Karkkainen J. (2001) Determination of potentially hallucinogenic N-dimethylated indoleamines in human urine by HPLC/ESI-MS-MS. J. Scan. J. Clin. Lab. Invest. 61, 547–556.

    Article  CAS  Google Scholar 

  • Fromant M., Fayat G., Laufer P., and Blanquet S. (1981) Affinity chromatography of aminoacyl-tRNA syntheses on agarose-hexyl-adenosine-5′-phosphate. Biochimie 63, 541–553.

    Article  PubMed  CAS  Google Scholar 

  • Gallyas F. (1970) Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphol. Acad. Sci. Hung. 19, 1–8.

    Google Scholar 

  • German D. C., White C. L. 3rd, Sparkman D. R. (1987) Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience 21, 305–312.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert J. A., Bates L. A., and Ames M. M. (1995) Elevated aromatic-l-amino acid decarboxylase in human carcinoid tumors. Biochem. Pharmacol. 50, 845–850.

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Isla T., Hollister R., West H. L., et al. (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann. Neurol. 41, 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Gomes-Ramos P. and Moran M. A. (1998) Ultrastructural aspects of neurofibrillary tangel formation in aging and Alzheimer’s disease. Micros. Res. Tech. 43, 49–58.

    Article  Google Scholar 

  • Gotz J., Schild A., Hoerndli F., and Pennanen L. (2004) Amyloid-induced neurofibrillary tangle formation in Alzheimer’s disease: insight from transgenic mouse and tissue-culture models. Int. J. Dev. Neurosci. 22, 453–465.

    Article  PubMed  CAS  Google Scholar 

  • Hamacher K., Coenen H. H., and Stocklin G. (1986) Efficient stereospecific synthesis of no-carrier added 2-[18F]-fluoro-2-deoxy-d-glucose using aminopolyether supproted nucleophilic substitution. J. Nuclear Med. 27, 235–238.

    CAS  Google Scholar 

  • Harris F. M., Brecht W. J., Xu Q., et al. (2003) Carboxylterminal-truncated apolipoprotein E4 causes Alzheimer’s disease-like neurodegeneration and behavioral deficits in transgenic mice. Proc. Natl. Acad. Sci. USA 100, 10,966–10,971.

    Article  CAS  Google Scholar 

  • Helene C., Dimicoli J. L., and Brun F. (1971) Binding of tryptamine and 5-hydroxytryptamine (serotonin) to nucleic acids. Fluorescence and proton magnetic resonance studies. Biochemistry 10, 3802–3809.

    Article  PubMed  CAS  Google Scholar 

  • Huang Y., Liu X. Q., Wyss-Coray T., Brecht W. J., Sanan D. A., and Mahley R. W. (2001) Apolipoprotein E fragments present in Alzheimer’s disease brains induce neurofibrillary tangle-like intracellular inclusions in neurons. Proc. Natl. Acad. Sci. USA 98, 8838–8843.

    Article  PubMed  CAS  Google Scholar 

  • Jacob J. and Michaud G. (1962) Effect of 5-hydroxytrptamine and nicotine on hypertension induced by 5-hydroxytryptamine, nicotine, tryptamine and acetaldehyde. Arch. Int. Pharmacodyn. Ther. 140, 92–104.

    PubMed  CAS  Google Scholar 

  • Jones R. S. (1982) A comparison of the responses of cortical neurones to iontophoretically applied tryptamine and 5-hydroxytryptamine in the rat. Neuropharmacology 21, 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Jorio A. V. and Durden D. A. (1984) The distribution and turnover of tryptamine in the brain and spinal cord. Neurochem. Res. 9, 1283–1293.

    Article  Google Scholar 

  • Kalac P. and Krizek M. (2003) A review of biogenic amines and polyamines in beer. J. Inst. Brew. 109, 123–128.

    CAS  Google Scholar 

  • Kalac P., Svecova S., and Pelikanova T. (2002) Food Chem. 77, 349–351.

    Article  CAS  Google Scholar 

  • Kisselev L. L., Favorova O. O., and Kovaleva G. K. (1979) Tryptophanyl-tRNA synthetase from beef pancreas. Methods Enzymol. 59(G), 234–257.

    Article  PubMed  CAS  Google Scholar 

  • Lee V. M.-Y., Balin B. J., Otvos L. Jr., and Trojanowski J. Q. (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal tau. Science 251, 675–678.

    Article  PubMed  CAS  Google Scholar 

  • Levchenko A., Robitaille Y., Strong M. J., and Rouleau G. A. (2004) TAU mutations are not a predominant cause of frontotemporal dementia in Canadian patients. Can. J. Neurol. Sci. 31, 363–367.

    PubMed  Google Scholar 

  • Lewin A. H. (2006) Receptors of Mammalian Trace Amines. The AAPS J. 8, E138-E145.

    Article  CAS  Google Scholar 

  • Liberski P. P., Yanagihara R., Gibbs C. J. Jr., and Gajdusek D. C. (1992) Neuronal autophagic vacuoles in experimental scrapie and Creutzfeld-Jacob disease. Acta Neuropathol. 83, 134–139.

    Article  PubMed  CAS  Google Scholar 

  • Lowe G. and Tansley G. (1984) An investigation of the mechanism of activation of tryptophan by tryptophanyl-tRNA synthetase from beef pancreas. Eur. J. Biochem. 138, 597–602.

    Article  PubMed  CAS  Google Scholar 

  • Martuscelli M., Crudele M. A., Gardini F., and Suzzi G. (2000) Biogenic amine formation and oxidation by Staphylococcus xylosus strains from artisanal fermented sausages. Lett. Appl. Microbiol. 31, 228–232.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Sherman M. (2003) Perturbed signal transduction in neurodegenerative disorders involving aberrant protein aggregation. Neuromol. Med. 4, 109–132.

    Article  CAS  Google Scholar 

  • McDonald W. M., Holtzheimer P. E., and Byrd E. H. (2006) The diagnosis and treatment of depression in Parkinson’s disease. Curr. Treat Options Neurol. 8, 245–255.

    Article  PubMed  Google Scholar 

  • Miklossy J., Taddei K., Martins R., et al. (1999) Alzheimer disease: curly fibers and tangles in organs other than brain. J. Neuropathol. Exp. Neurol. 58, 803–814.

    PubMed  CAS  Google Scholar 

  • Mimnaugh E. G., Xu W., Vos M., et al. (2004) Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol. Cancer Ther. 3, 551–566.

    PubMed  CAS  Google Scholar 

  • Mizunoya W., Oyaizu S., Hirayama A., and Fushiki T. (2004) Effects of physical fatigue in mice on learning performance in a water maze. Biosci. Biotechnol. Biochem. 4, 827–834

    Article  Google Scholar 

  • Molina J. A., Jimenez-Jimenez F. J., Gomez P., et al. (1997) Decreased cerebrospinal fluid levels of neutral and basic amino acids in patients with Parkinson’s disease. J. Neurol. Sci. 150, 123–127.

    Article  PubMed  CAS  Google Scholar 

  • Mousseau D. D. (1993) Tryptamine: a metabolite of tryptophan implicated in various neuropsychiatric disorders. Matab. Brain Dis. 8, 1–44.

    Article  CAS  Google Scholar 

  • Mousseau D. D. and Butterworth R. F. (1994) The [3H]tryptamine receptor in human brain: kinetics, distribution, and pharmacologic profile. J. Neurochem. 63, 1052–1059.

    Article  PubMed  CAS  Google Scholar 

  • Mousseau D. D. and Butterworth R. F. (1995) Trace amines in hepatic encephalopathy, in The Progress in Brain Research, vol. 106, Yu, P. M., Tipton, K. F., and Boulton A. A., eds., Elsevier Science, Amsterdam, pp. 277–284.

    Google Scholar 

  • Nemecek G. M., Coughlin S. R., Handley D. A., and Moskowitz M. A. (1986) Stimulation of aortic smooth muscle cell mitogenesis by serotonin. Proc. Natl. Acad. Sci. USA 83, 674–678.

    Article  PubMed  CAS  Google Scholar 

  • Newmester A., Haberler A., Praschak-Rieder N., Willeit M., and Kasper S. (1999) Tryptophan depletion: a predictor of future depressive episodes in seasonal affective disorder. Int. Clin. Psychopharmacol. 14, 313–315.

    Article  Google Scholar 

  • Nishimura M., Namba Y., Ikeda K., and Oda M. (1992) Glial fibrillary tangles with straight tubulus in the brains of patients with progressive supranuclear palsy. Neurosci. Lett. 143, 35–38.

    Article  PubMed  CAS  Google Scholar 

  • Novella-Rodriguez S., Veciana-Nogues M. T., Roig-Sagues A. X., Trujillo-Mesa, A. J., and Vidal-Carou M. C. (2002) Influence of starter and nonstarter on the formation of biogenic amine in goat cheese during ripening. J. Dairy Sci. 85, 2471–2478.

    Article  PubMed  CAS  Google Scholar 

  • O’Kane R. L. and Hawkins R. A. (2003) Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. Am. J. Physiol. Endocrinol. Metab. 285, 1167–1173.

    Google Scholar 

  • Okuyama S., Chaki S., Yoshikawa R., et al. (1997) In vitro and in vivo characterization of the dopamine D4 receptor, serotonin 5-HT2A receptor and alpha-1 adrenoceptor antagonist (R)-(+)-2-amino-4-(4-fluorophenyl)-5-[1-[4-(4-fluorophenyl)-4-oxobutyl]pyrrolidin-3-yl]thiazole (NRA0045). J. Pharmacol. Exp. Ther. 282, 56–63.

    PubMed  CAS  Google Scholar 

  • Paley E. L. (1997) A mammalian tryptophanyl-tRNA synthetase is associated with protein kinase activity. Eur. J. Biochem. 244, 780–788.

    Article  PubMed  CAS  Google Scholar 

  • Paley E. L. (1999) Tryptamine-mediated stabilization of tryptophanyl-tRNA synthetase in human cervical carcinoma cell line (1999). Cancer Lett. 137, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Paley E. L., Alexandrova N., and Smelansky L. (1995) Tryptophanyl-tRNA synthetase as a human antigen. Immunol. Lett. 48, 201–207.

    Article  PubMed  CAS  Google Scholar 

  • Paley E. L., Baranov V. N., Alexandrova N. M., and Kisselev L. L. (1991) Tryptophanyl-tRNA synhetase in cell lines resistant to tryptophananalogs. Exp. Cell Res. 195, 66–78.

    Article  PubMed  CAS  Google Scholar 

  • Paley E. L., Smelyanski L., Malinovskii V., et al. (2006) Mapping and molecular characterization of novel monoclonal antibodies to conformational epitopes on NH2 and COOH termini of mammalian tryptophanyl-tRNA synthetase reveal link of the epitopes to aggregation and Alzheimer’s disease. Mol. Immunol. In press.

  • Perani D., Bressi S., Cappa S. F., et al. (1993) Evidence of multiple memory systems in the human brain. A [18F]FDG PET metabolic study. Brain 116, 903–919.

    Article  PubMed  Google Scholar 

  • Porter R. J., Lunn B. S., and O’Brien J. T. (2003) Effects of acute tryptophan depletion on cognitive function in Alzheimer’s disease and in the healthy elderly. Psychol. Med. 33, 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Riederer P., Danielczyk W., and Grunblatt E. (2004) Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology 25, 271–277.

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum W. I. (1999) The presence, origin, and significance of A beta peptide in the cell bodies of neurons. J. Neuropathol. Exp. Neurol. 58, 575–581.

    PubMed  CAS  Google Scholar 

  • Rowe S. K. and Rapaport M. H. (2006) Classification and treatment of sub-threshold depression. Curr. Opin. Psychiatry 19, 9–13.

    Article  PubMed  Google Scholar 

  • Rubin B. Y., Anderson S. L., Xing L., Powell R., and Tate W. P. (1991) Interferon induces tryptophanyl-tRNA synthetase expression in human fibroblasts. J. Biol. Chem. 266, 24,245–24,248.

    CAS  Google Scholar 

  • Sari Y. and Zhou F. C. (2004) Prenatal alcohol exposure causes long-term serotonin neuron deficit in mice. Alcoholism: clinical and experimental research. Alcohol Clin. Exp. Res. 28, 941–948.

    PubMed  CAS  Google Scholar 

  • Shalaby A. R. (2000) Changes in biogenic amines in mature and germinating legume seeds and their behavior during cooking. Nahrung 44, 23–27.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M. G. and Goedert M. (1998) Tau protein pathology in neurodegenerative diseases. Trends Neurosci. 21, 428–433.

    Article  PubMed  CAS  Google Scholar 

  • Smith G., Vigen V., Evans J., Fleming K., and Bohac D. (1998) Patterns and associates of hyperphagia in patients with dementia. Neuropsychiatr. Neuropsychol. Behav. Neurol. 11, 97–102.

    CAS  Google Scholar 

  • Sokolova O., Accardi A., Gutierrez D., Lau A., Rigney M., and Grigorieff N. (2003) Conformational changes in the C terminus of Shaker K+ channel bound to the rat Kvbeta2-subunit. Proc. Natl. Acad. Sci. USA 100, 12,607–12,612.

    Article  CAS  Google Scholar 

  • Starkstein S. E., Jorge R., Mizrahi R., and Robinson R. G. (2005) The construct of minor and major depression in Alzheimer’s disease. Am. J. Psychiatry 162, 2086–2093.

    Article  PubMed  Google Scholar 

  • Sugimoto Y., Kimura I., Yamada J., Watanabe Y., and Horisaka K. (1994) Effects of tryptamine on plasma glucagon levels in mice. Neurochem. Res. 19, 15–18.

    Article  PubMed  Google Scholar 

  • Sugimoto Y., Kimura I., Yamada J., Watanabe Y., Takeuchi N., and Horisaka K. (1991) The involvement of insulin in tryptamine-induced hypoglycemia in mice. Life Sci. 48, 1679–1683.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan J. L., Coffey C. E., Basuk B., Cavenar J. O., Maltbie A. A., and Zung W. W. (1980) Urinary tryptamine excretion in chronic schizophrenics with low platelet MAO activity. Biol. Psychiatry 15, 113–120.

    PubMed  CAS  Google Scholar 

  • Tabaton M., Cammarata S., Mancardi G., et al. (1991) Ultrastructural localization of beta-amyloid, tau, and ubiquitin epitopes in extracellular neurofibrillary tangles. Proc. Natl. Acad. Sci. USA 88, 2098–2102.

    Article  PubMed  CAS  Google Scholar 

  • Taylor M. W. and Feng G. S. (1991) Relationship between interferon-gamma, indolea mine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 11, 2516–2522.

    Google Scholar 

  • Thomas J. C., Saleh E. F., Alammar N., and Akroush A. M. (1998) The indole alkaloid tryptamine impairs reproduction in Drosophila melanogaster. J. Econ. Entomol. 91, 841–846.

    PubMed  CAS  Google Scholar 

  • Tsuchiya H., Ohtani S., Yamada K., Tajima K., and Sato M. (1995) Formation of tetrahydro-beta-carbolines in human saliva. Biochem. Pharmacol. 50, 2109–2112.

    Article  PubMed  CAS  Google Scholar 

  • Tuzikov F. V., Tuzikova N. A., Vavilin V. I., et al. (1991) Aggregation of tryptophanyl-tRNA synthetase depending on temperature. Study by a low-angle scatter X-ray method. Mol. Biol. (Mosk) 25, 740–751.

    CAS  Google Scholar 

  • Valls J. E., Bello R. A., and Kodaira M. S. (2002) Semiquantitative analysis by thin-layer chromatography (TLC) of biogenic amines in dired, salted and canned fish products. J. Food Qual. 26, 91–180.

    Google Scholar 

  • von Gunten A., Kovari E., Bussiere T., et al. (2006) Cognitive impact of neuronal pathology in the entorhinal cortex and CA1 field in Alzheimer’s disease. Neurobiol. Aging 27, 270–277.

    Article  CAS  Google Scholar 

  • Walter J., Hertel C., Tannock G. W., Lis C. M., Munro K. and Hammes W. P. (2001) Defection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67, 2578–2585.

    Article  PubMed  CAS  Google Scholar 

  • Weiner M. F., Hynan L. S., Parikh B., et al. (2003) Can Alzheimer’s disease and dementias with Lewy bodies be distinguished clinically. J. Geriatr. Psychiatr. Neurol. 16, 245–250.

    Article  Google Scholar 

  • Yamada J., Sugimoto Y., and Horisaka K. (1987a) The behavioral effects of intravenously administered tryptamine in mice. Neuropharmacology 26, 49–53.

    Article  PubMed  CAS  Google Scholar 

  • Yamada J., Wakita H., Sugimoto Y., and Horisaka K. (1987b) Hypothermia induced in mice by intracerebroventricular injection of tryptamine: involvement of the 5-HT1 receptor. Eur. J. Pharmacol. 139, 117–119.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M., Goto K., and Watanabe S. (2001) Task-dependent strain difference of spatial learning in C57BL/6N and BALB/c mice. Physiol. Behav. 73, 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Young E. A., Neff N. H., and Hadjiconstantinou M. (1994) Phorbol ester administration transciently increases aromatic l-amino acid decarboxylase activity of the mouse striatum and midbrain. J. Neurochem. 63, 694–697.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena L. Paley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paley, E.L., Denisova, G., Sokolova, O. et al. Tryptamine induces tryptophanyl-tRNA synthetase-mediated neurodegeneration with neurofibrillary tangles in human cell and mouse models. Neuromol Med 9, 55–82 (2007). https://doi.org/10.1385/NMM:9:1:55

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:9:1:55

Index Entries

Navigation