Skip to main content
Log in

Lack of minocycline efficiency in genetic models of Huntington’s disease

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

According to the recent controversy regarding the effects of minocycline in the R6/2 transgenic model of Huntington’s disease (HD), this tetracycline has been re-evaluated in another model, the N171-82Q strain. Ten miligrams per kilogram minocycline was given daily from the age of 2 mo, corresponding to an early symptomatic stage. We did not observe improvement in survival, weight loss, or motor function in treated transgenic mice. In addition, minocycline failed to mitigate the ventricle enlargement as well as the striatal and cortical atrophies induced by the transgene. Using high-performance liquid chromatography, it was observed that minocycline was similarly present in the plasma and the brain of both wild-type and N171-82Q mice following 14 daily injections. Using Western blot, we show that the increased expression of procaspase-1 induced by the transgene in the cortex was significantly reduced by the antibiotic. Combining together these data support that despite minocycline crosses blood-brain barrier in N171-82Q mice and displays an expected effect on procaspase-1 expression, it does not provide protection in this HD model. These in vivo results are in accordance with in vitro data, since minocycline failed to protect against mutated Huntingtin in an inducible PC12-clone expressing exon1 of mutated Huntingtin103Q. Altogether, the present data does not support minocycline as a beneficial drug for HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken C. T., Tobin A. J., and Schweitzer E. S. (2004) A cell-based screen for drugs to treat Huntington’s disease. Neurobiol. Dis. 16, 546–555.

    Article  PubMed  CAS  Google Scholar 

  • Apostol B. L., Kazantsev A., Raffioni S., et al. (2003) A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila. Proc. Natl. Acad. Sci. USA 100, 5950–5955.

    Article  PubMed  CAS  Google Scholar 

  • Bantubungi K., Jacquard C., Greco A., et al. (2005) Minocycline in phenotypic models of Huntington’s disease. Neurobiol. Dis. 18, 206–217.

    Article  PubMed  CAS  Google Scholar 

  • Beal M. F. (2005) Mitochondrial take center stage in aging and neurodegeneration. Ann. Neurol. 58, 495–505.

    Article  PubMed  CAS  Google Scholar 

  • Blum D., Chtarto A., Tenenbaum L., Brotchi J., and Levivier M. (2004) Clinical potential of minocycline for neurodegenerative disorders. Neurobiol. Dis. 17, 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Bonelli R. M., Heuberger C., and Reisecker F. (2003) Minocycline for Huntington’s disease: an open label study. Neurology 60, 883–884.

    PubMed  Google Scholar 

  • Chen M., Ona V. O., Li M., et al. (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat. Med. 6, 797–801.

    Article  PubMed  CAS  Google Scholar 

  • Cornet S., Spinnewyn B., Delaflotte S., et al. (2004) Lack of evidence of direct mitochondrial involvement in the neuroprotective effect of minocycline. Eur. J. Pharmacol. 505, 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Diguet E., Rouland R., and Tison F. (2003) Minocycline is not beneficial in a phenotypic mouse model of Huntington’s disease. Ann. Neurol. 54, 841–842.

    Article  PubMed  Google Scholar 

  • Diguet E., Fernagut P. O., Wei X., et al. (2004) Deleterious effects of minocycline in animal models of Parkinson’s disease and Huntington’s disease. Eur. J. Neurosci. 19, 3266–3276.

    Article  PubMed  Google Scholar 

  • Du Y., Ma Z., Lin S., et al. (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 98, 14,669–14,674.

    CAS  Google Scholar 

  • Hersch S. M. and Ferrante R. J. (2004) Translating therapies for Huntington’s disease from genetic animal models to clinical trials. NeuroRx. 1, 298–306.

    Article  PubMed  Google Scholar 

  • Hersch S., Fink K., Vonsattel J. P., and Friedlander R. M. (2003) Minocycline is protective in a mouse model of Huntington’s disease. Ann. Neurol. 54, 841–843.

    Article  PubMed  Google Scholar 

  • Hockly E., Beunard J. L., Lowden P. A., and Bates G. P. (2003) Reply. Ann. Neurol. 54, 842–843.

    Article  Google Scholar 

  • Hodl A. K. and Bonelli R. M. (2005) Huntington’s disease and minocycline. Mov Disord. 20, 510–511.

    Article  PubMed  Google Scholar 

  • Huntington Study Group. (2004) Minocycline safety and tolerability in Huntington disease. Neurology 63, 547–549.

    Google Scholar 

  • Schilling G., Becher M. W., Sharp A. H., et al., (1999) Intranuclear inclusions and neuritic aggregates in transgenic mice expresing a mutant N-terminal fragment of huntingtin. Hum. Mol. Genet. 8, 397–407.

    Article  PubMed  CAS  Google Scholar 

  • Smith D. L., Woodman B., Mahal A., et al. (2003) Minocycline and doxycycline are not beneficial in a model of Huntington’s disease. Ann. Neurol. 54, 186–196.

    Article  PubMed  CAS  Google Scholar 

  • Stack E. C., Smith K. M., Ryu H., et al. (2006) Combination therapy using minocycline and coenzyme Q10 in R6/2 transgenic Huntington’s disease mice. Biochim. Biophys. Acta 1762, 373–380.

    PubMed  CAS  Google Scholar 

  • Thomas M., Ashizawa T., and Jankovic J. (2004) Minocycline in Huntington’s disease: a pilot study. Mov. Disord. 19, 692–695.

    Article  PubMed  Google Scholar 

  • Wang X., Zhu S., Drozda M., et al. (2003) Minocycline inhibits caspase-independent and-dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc. Natl. Acad. Sci. USA 100, 10,483–10,487.

    CAS  Google Scholar 

  • Yu Z. X., Li S. H., Evans J., Pillarisetti A., Li H., and Li X. J. (2003) Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington’s disease. J. Neurosci. 23, 2193–2202.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Blum.

Additional information

Are joint senior authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mievis, S., Levivier, M., Communi, D. et al. Lack of minocycline efficiency in genetic models of Huntington’s disease. Neuromol Med 9, 47–54 (2007). https://doi.org/10.1385/NMM:9:1:47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:9:1:47

Index Entries

Navigation