Advertisement

NeuroMolecular Medicine

, Volume 8, Issue 4, pp 531–546 | Cite as

The neurobiology of the tuberous sclerosis complex

  • Leah Marcotte
  • Peter B. Crino
Review Article

Abstract

Tuberous sclerosis complex (TSC) is a multisystem disorder that affects numerous organ systems. Brain lesions that form during development, known as tubers, are highly associated with epilepsy, cognitive disability, and autism. Following the identification of two genes and their encoded proteins, TSC1 (hamartin) and TSC2 (tuberin), responsible for TSC, identification of several downstream protein cascades that might be affected in TSC have been discovered. Of primary importance is the mammalian target of rapamycin pathway that controls cell growth and protein synthesis. The mechanisms governing brain lesion growth have not been fully identified but likely altered regulation of the mammalian target of rapamycin cascade by hamartin and tuberin during development leads to aberrant cell growth. Secondary effects of TSC gene mutations might disrupt normal neuronal migration and cerebral cortical lamination. Numerous studies have identified changes in gene and protein expression in animal models of TSC and in human TSC brain specimens that contribute to altered brain cytoarchitecture. This review will provide an overview of the neurobiological aspects of TSC.

Keywords

Tuberous Sclerosis Tuberous Sclerosis Complex Tuberin Infantile Spasm NeuroMolecular Medicine Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astridinis A. and Henske E. P. (2005) Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene 24, 7475–7481.Google Scholar
  2. Astrinidis A., Senapedis W., Coleman T. R., and Henske E. P. (2003) Cell cycle-regulated phosphorylation of hamartin, the product of the tuberous sclerosis complex 1 gene, by cyclin-dependent kinase 1/cyclin B. J. Biol. Chem. 278, 51,372–51,379.Google Scholar
  3. Baron Y. and Barkovich A. J. (1999) MR imaging of tuberous sclerosis in neonates and young infants. AJNR Am. J. Neuroradiol. 20, 907–916.PubMedGoogle Scholar
  4. Baybis M., Yu J., Lee A., et al. (2004) mTOR Cascade Activation Distinguishes Tubers from Focal Cortical Dysplasia. Ann. Neurol. 56, 478–487.PubMedGoogle Scholar
  5. Birchenall-Roberts M. C., Fu T., Bang O. S., et al. (2004) Tuberous Sclerosis Complex 2 Gene Product Interacts with Human SMAD Proteins: a molecular link of two tumor suppressor pathways. J. Biol. Chem. 279, 25,605–25,613.Google Scholar
  6. Carlson B. A., Houser O. W., and Gomez M. R. (1999) Brain Imaging in the Tuberous Sclerosis Complex, in Tuberous Sclerosis Complex: developmental Perspectives in Psychiatry, Gomez M. R., Sampson J. R., and Whittemore V. H., eds., Oxford University Press, New York, pp. 85–100.Google Scholar
  7. Catania M. G., Mischel P. S., and Vinters H. V. (2001) Hamartin and tuberin interaction with the G2/M cyclin-dependent kinase CDK1 and its regulatory cyclins A and B. J. Neuropathol. Exp. Neurol. 60, 711–723.PubMedGoogle Scholar
  8. Chan J. A., Zhang H., Roberts P. S., et al. (2004) Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J. Neuropathol. Exp. Neurol. 63, 1236–1242.PubMedGoogle Scholar
  9. Chugani D. C., Chugani H. T., Muzik O., et al. (1998) Imaging epileptogenic tubers in children with tuberous sclerosis complex using alpha-[11C]methyl-L-tryptophan positron emission tomography. Ann. Neurol. 44, 858–866.PubMedGoogle Scholar
  10. Consortium ECTS (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305–1315.Google Scholar
  11. Crino P. B. and Henske E. P. (1999) New developments in the neurobiology of the tuberous sclerosis complex. Neurology. 53, 1384–1390.PubMedGoogle Scholar
  12. Crino P. B., Miyata H., and Vinters H. V. (2002) Neurodevelopmental Disorders as a Cause of Seizures: Neuropathologic, Genetic, and Mechanistic Considerations. Brain Pathol. 12, 212–233.PubMedCrossRefGoogle Scholar
  13. Crino P. B., Trojanowski J. Q., Dichter M. A., and Eberwine J. (1996) Embryonic neuronal markers in tuberous sclerosis: single-cell molecular pathology. Proc. Natl. Acad. Sci. USA 93, 14,152–14,157.Google Scholar
  14. Curatolo P., Bombardieri R., Verdecchia M., and Seri S. (2005) Intractable Seizures in Tuberous Sclerosis Complex: From Molecular Pathogenesis to the Rationale for Treatment. J. Child Neurol. 20, 318–325.PubMedGoogle Scholar
  15. Curatolo P., Seri S., Verdecchia M., and Bombardieri R. (2001) Infantile spasms in tuberous sclerosis complex. Brain Dev. 23, 502–507.PubMedGoogle Scholar
  16. Dabora S. L., Jozwiak S., Franz D. N., et al. (2001) Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am. J. Hum. Genet. 68, 64–80.PubMedGoogle Scholar
  17. Dan H. C., Sun M., Yang L., et al. (2002) Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J. Biol. Chem. 277, 35,364–35,370.Google Scholar
  18. DiMario F. J. Jr. (2004) Brain abnormalities in tuberous sclerosis complex. J. Child Neurol. 19, 650–657.PubMedGoogle Scholar
  19. Ess K. C., Kamp C. A., Tu B. P., and Gutmann D. H. (2005) Developmental origin of subependymal giant cell astrocytoma in tuberous sclerosis complex. Neurology. 64, 1446–1449.PubMedGoogle Scholar
  20. Ess K. C., Uhlmann E. J., Li W., et al. (2004) Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to characterize human TSC brain pathology. Glia 46, 28–40.PubMedGoogle Scholar
  21. Fauser S., Becker A., Schulze-Bonhage A., et al. (2004) CD34-immunoreactive balloon cells in cortical malformations. Acta Neuropathol. (Berl.) 108, 272–278.Google Scholar
  22. Finlay G. A., York B., Karas R. H., et al. (2004) Estrogen-induced smooth muscle cell growth is regulated by tuberin and associated with altered activation of platelet-derived growth factor receptor-beta and ERK-1/2. J. Biol. Chem. 279, 23,114–23,122.Google Scholar
  23. Gao X. and Pan D. (2001) TSC1 and TSC2 tumor suppressors antagonize insulin signaling in cell growth. Genes Dev. 15, 1383–1392.PubMedGoogle Scholar
  24. Gao X., Zhang Y., Arrazola P., et al. (2002) Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat. Cell Biol. 4, 699–704.PubMedGoogle Scholar
  25. Goh S., Butler W., and Thiele E. A. (2004) Subependymal giant cell tumors in tuberous sclerosis complex. Neurology 63, 1457–1461.PubMedGoogle Scholar
  26. Goh S., Kwiatkowski D. J., Dorer D. J., and Thiele E. A. (2005) Infantile spasms and intellectual outcomes in children with tuberous sclerosis complex. Neurology 65, 235–238.PubMedGoogle Scholar
  27. Gomez M. R. (1999) Natural History of Cerebral Tuberous Sclerosis, in Tuberous Sclerosis Complex: Developmental Perspectives in Psychiatry, Gomez M. R., Sampson J. R., and Whittemore V. H., eds., Oxford University Press, New York, pp. 29–46.Google Scholar
  28. Goodman M., Lamm S. H., Engel A., Shepherd C. W., Houser O. W., and Gomez M. R. (1997) Cortical tuber count: a biomarker indicating neurologic severity of tuberous sclerosis complex. J. Child Neurol. 12, 85–90.PubMedGoogle Scholar
  29. Griffiths P. D., Bolton P., and Verity C. (1998) White matter abnormalities in tuberous sclerosis complex. Acta Radiol. 39, 482–486.PubMedGoogle Scholar
  30. Gutmann D. H., Zhang Y., Hasbani M. J., Goldberg M. P., Plank T. L., and Henske E. P. (2000) Expression of the tuberous sclerosis complex gene products, hamartin and tuberin, in central nervous system tissues. Acta Neuropathol. (Berl.) 99, 223–230.Google Scholar
  31. Haddad L. A., Smith N., Bowser M., et al. (2002) The TSC1 tumor suppressor hamartin interacts with neurofilament-L and possibly functions as a novel integrator of the neuronal cytoskeleton. J. Biol. Chem. 277, 44,180–44,186.Google Scholar
  32. Henske E. P., Scheithauer B. W., Short M. P., et al. (1996) Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain lesions. Am. J. Hum. Genet. 59, 400–406.PubMedGoogle Scholar
  33. Henske E. P., Wessner L. L., Golden J., et al. (1997) Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am. J. Pathol. 151, 1639–1647.PubMedGoogle Scholar
  34. Hirose T., Scheithauer B. W., Lopes M. B., et al. (1995) Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropathol. (Berl.) 90, 387–399.Google Scholar
  35. Hosoya M., Naito H., and Nihei K. (1999) Neurological prognosis correlated with variations over time in the number of subependymal nodules in tuberous sclerosis. Brain Dev. 21, 544–547.PubMedGoogle Scholar
  36. Humphreys R. P. (2004) The modernization of pediatric neurosurgery. The Donald D. Matson Lecture 2003. Childs Nerv. Syst. 20, 18–22.PubMedGoogle Scholar
  37. Im E., von Lintig F. C., Chen J., et al. (2002) Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene 21, 6356–6365.PubMedGoogle Scholar
  38. Jansen L. A., Uhlmann E. J., Crino P. B., Gutmann D. H., and Wong M. (2005) Epileptogenesis and Reduced Inward Rectifier Potassium Current in Tuberous Sclerosis Complex-1-Deficient Astrocytes. Epilepsia 46, 1871–1880.PubMedGoogle Scholar
  39. Johnson M. W., Emelin J. K., Park S. H., and Vinters H. (1999) Co-localization of TSC1 and TSC2 gene products in tubers of patients with tuberous sclerosis. Brain Pathol. 9, 45–54.PubMedCrossRefGoogle Scholar
  40. Johnson M. W., Kerfoot C., Bushnell T., Li M., and Vinters H. V. (2001) Hamartin and tuberin expression in human tissues. Mod. Pathol: Official J. US and Can. Acad. Pathol., Inc. 14, 202–210.Google Scholar
  41. Joinson C., O'Callaghan F. J., Osborne J. P., Martyn C., Harris T., and Bolton P. F. (2003) Learning disability and epilepsy in an epidemiological sample of individuals with tuberous sclerosis complex. Psychol. Med. 33, 335–344.PubMedGoogle Scholar
  42. Jones A. C., Daniells C. E., Snell R. G., et al. (1997) Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum. Mol. Genet. 6, 2155–2161.PubMedGoogle Scholar
  43. Jones A. C., Shyamsundar M. M., Thomas M. W., et al. (1999) Comprehensive mutation analysis of TSC1 and TSC2-and phenotypic correlations in 150 families with tuberous sclerosis. Am. J. Hum. Genet. 64, 1305–1315.PubMedGoogle Scholar
  44. Kerfoot C., Wienecke R., Menchine M., et al. (1996) Localization of tuberous sclerosis 2 mRNA and its protein product tuberin in normal human brain and in cerebral lesion of patients with tuberous sclerosis. Brain Pathol. 6, 367–377.PubMedGoogle Scholar
  45. Kim S. K., Wang K. C., Cho B. K., et al. (2001) Biological behavior and tumorigenesis of subependymal giant cell astrocytomas. J. Neuro-Oncol. 52, 217–225.Google Scholar
  46. Knudson A. (1971) Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68, 820–823.PubMedGoogle Scholar
  47. Koh S., Jayakar P., Dunoyer C., et al. (2000) Epilepsy surgery in children with tuberous sclerosis complex: presurgical evaluation and outcome. Epilepsia 41, 1206–1213.PubMedGoogle Scholar
  48. Kwiatkowska J., Wigowska-Sowinska J., Napierala D., Slomski R., and Kwiatkowski D. J. (1999) Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis. N. Engl. J. Med. 340, 703–707.PubMedGoogle Scholar
  49. Kyin R., Hua Y., Baybis M., et al. (2001) Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex. Am. J. Pathol. 159, 1541–1554.PubMedGoogle Scholar
  50. Lamb R. F., Roy C., Diefenbach T. J., et al. (2000) The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat. Cell Biol. 2, 281–287.PubMedGoogle Scholar
  51. Lazarowski A., Lubieniecki F., Camarero S., et al. (2004) Multidrug resistance proteins in tuberous sclerosis and refractory epilepsy. Pediatr. Neurol. 30, 102–106.PubMedGoogle Scholar
  52. Lee A., Maldonado M., Baybis M., et al. (2003) Markers of cellular proliferation are expressed in cortical tubers. Ann. Neurol. 53, 668–673.PubMedGoogle Scholar
  53. Li Y., Inoki K., Vacratsis P., and Guan K. L. (2003) The p38 and MK2 kinase cascade phosphorylates tuberin, the tuberous sclerosis 2 gene product, and enhances its interaction with 14-3-3. J. Biol. Chem. 278, 13,663–13,667.Google Scholar
  54. Lopes M. B., Altermatt H. J., Scheithauer B. W., Shepherd C. W., and VandenBerg S. R. (1996) Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol. (Berl.) 91, 368–375.Google Scholar
  55. Lou D., Griffith N., and Noonan D. J. (2001) The tuberous sclerosis 2 gene product can localize to nuclei in a phosphorylation-dependent manner. Mol. Cell Biol. Res. Commun. 4, 374–380.PubMedGoogle Scholar
  56. Ma L., Chen Z., Erdjument-Bromage H., Tempst P., and Pandolfi P. P. (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179–193.PubMedGoogle Scholar
  57. Maheshwar M. M., Cheadle J. P., Jones A. C., et al. (1997) The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum. Mol. Genet. 6, 1991–1996.PubMedGoogle Scholar
  58. Maldonado M., Baybis M., Newman D., et al. (2003) Expression of ICAM-1, TNF-alpha, NF kappa B, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol. dis. 14, 279–290.PubMedGoogle Scholar
  59. Manning B. D., Tee A. R., Logsdon M. N., Blenis J., and Cantley L. C. (2003) Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol. Cell Biol. 10, 151–162.Google Scholar
  60. Manning B. D., Logsdon M. N., Lipovsky A. I., Abbott D., Kwiatkowski D. J., and Cantley L. C. (2005) Feedback inhibition of Akt signaling limits the growth of tumors lacking Tsc2. Genes Dev. 19, 1773–1778.PubMedGoogle Scholar
  61. Miyata H., Chiang A. C., and Vinters H. V. (2004) Insulin signaling pathways in cortical dysplasia and TSCtubers: tissue microarray analysis. Ann. Neurol. 56, 510–509.PubMedGoogle Scholar
  62. Mizuguchi M. and Takashima S. (2001) Neuropathology of tuberous sclerosis. Brain Dev. 23, 508–515.PubMedGoogle Scholar
  63. Murthy V., Han S., Beauchamp R. L., et al. (2004) Pam and its ortholog highwire interact with and may negatively regulate the TSC1.TSC2 complex. J. Biol. Chem. 279, 1351–1358.PubMedGoogle Scholar
  64. Murthy V., Stemmer-Rachamimov A. O., Haddad L. A., et al. (2001) Developmental expression of the tuberous sclerosis proteins tuberin and hamartin. Acta Neuropathol. (Berl.) 101, 202–210.Google Scholar
  65. Niida Y., Lawrence-Smith N., Banwell A., et al. (1999) Analysis of both TSC1 and TSC2 for germline mutations in 126 unrelated patients with tuberous sclerosis. Hum. Mutat. 14, 412–422.PubMedGoogle Scholar
  66. Niida Y., Stemmer-Rachamimov A. O., Logrip M., et al. (2001) Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am. J. Hum. Genet. 69, 493–503.PubMedGoogle Scholar
  67. Noonan D. J., Lou D., Griffith N., and Vanaman T. C. (2002) A calmodulin binding site in the tuberous sclerosis 2 gene product is essential for regulation of transcription events and is altered by mutations linked to tuberous sclerosis and lymphangioleiomyomatosis. Arch. Biochem. Biophys. 398, 132–140.PubMedGoogle Scholar
  68. O'Callaghan F. J., Harris T., Joinson C., et al. (2004) The relation of infantile spasms, tubers, and intelligence in tuberous sclerosis complex. Arch. Dis. Child. 89, 530–533.PubMedGoogle Scholar
  69. Onda H., Crino P. B., Zhang H., et al. (2002) Tsc2 null murine neuronal epithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol. Cell Neurosci. 21, 561–574.PubMedGoogle Scholar
  70. Park S. H., Pepkowitz S. H., Kerfoot C., et al. (1997) Tuberous sclerosis in a 20-week gestation fetus: immunohistochemical study. Acta Neuropathol. (Berl.) 94, 180–186.Google Scholar
  71. Plank T. L., Yeung R. S., and Henske E. P. (1998) Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res. 58, 4766–4770.PubMedGoogle Scholar
  72. Plank T. L., Logginidou H., Klein-Szanto A., and Henske E. P. (1999) The expression of hamartin, the product of the TSC1 gene, in normal human tissues and in TSC1- and TSC2-linked angiomyolipomas. Mod. Pathol. 12, 539–545.PubMedGoogle Scholar
  73. Potter C. J., Huang H., and Xu T. (2001) Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 105, 357–368.PubMedGoogle Scholar
  74. Prather P. and de Vries P. J. (2004) Behavioral and cognitive aspects of tuberous sclerosis complex. J. Child Neurol. 19, 666–674.PubMedGoogle Scholar
  75. Ridler K., Bullmore E. T., De Vries P. J., et al. (2001) Widespread anatomical abnormalities of grey and white matter structure in tuberous sclerosis. Psychol. Med. 31, 1437–1446.PubMedCrossRefGoogle Scholar
  76. Roach E. S., Gomez M. R., and Northrup H. (1998) Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J. Child Neurol. 13, 624–628.PubMedCrossRefGoogle Scholar
  77. Rosner M. and Hengstschlager M. (2004) Tuberin binds p27 and negatively regulates its interaction with the SCF component Skp2. J. Biol. Chem. 79, 48,707–48,715.Google Scholar
  78. Rott H. D., Lemcke B., Zenker M., Huk W., Horst J., and Mayer K. (2002) Cyst-like cerebral lesions in tuberous sclerosis. Am. J. Med. Genet. 111, 435–439.PubMedGoogle Scholar
  79. Roux P. P., Ballif B. A., Anjum R., Gygi S. P., and Blenis J. (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. USA 101, 13,489–13,494.Google Scholar
  80. Sancak O., Nellist M., Goedbloed M., et al. (2005) Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype-phenotype correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur. J. Hum. Genet. 13, 731–741.PubMedGoogle Scholar
  81. Saucedo L. J., Gao X., Chiarelli D. A., Li L., Pan D., and Edgar B. A. (2003) Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat. Cell Biol. 5, 566–571.PubMedGoogle Scholar
  82. Scheithauer B. W. and Reagan T. J. (1999) Neuropathology, in Tuberous Sclerosis Complex: Developmental Perspectives in Psychiatry, Gomez M. R., Sampson J. R., and Whittemore V. H., eds., Oxford University Press, New York, pp. 101–144.Google Scholar
  83. Sharma M. C., Ralte A. M., Gaekwad S., Santosh V., Shankar S. K., and Sarkar C. (2004) Subependymal Giant Cell Astrocytoma-a Clinicopathological Study of 23 Cases with Special Emphasis on Histogenesis. Pathol. Oncol. Res. 10, 219–224.PubMedCrossRefGoogle Scholar
  84. Shumway S. D., Li Y., and Xiong Y. (2003) 14-3-3beta binds to and negatively regulates the tuberous sclerosis complex 2 (TSC2) tumor suppressor gene product, tuberin. J. Biol. Chem. 278, 2089–2092.PubMedGoogle Scholar
  85. Smalley S. L. (1997) Autism and tuberous sclerosis. J. Autism Dev. Disord. 28, 407–414.Google Scholar
  86. Stefansson K., Wollmann R. L., and Huttenlocher P. R. (1999) Lineages of Cells in the Central Nervous System, in Tuberous Sclerosis Complex: Developmental Perspectives in Psychiatry, Gomez M. R., Sampson J. R., Whittemore V. H., eds., Oxford University Press: New York, pp. 250–262.Google Scholar
  87. Stocker H., Radimerski T., Schindelholz B., et al. (2003) Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat. Cell Biol. 5, 559–566.PubMedGoogle Scholar
  88. Takahashi D. K., Dinday M. T., Barbaro N. M., and Baraban S. C. (2004) Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia 45, 1525–1530.PubMedGoogle Scholar
  89. Tavazoie S. F., Alvarez V. A., Ridenour D. A., Kwiatkowski D. J., and Sabatini B. L. (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat. Neurosci. 8, 1727–1734.PubMedGoogle Scholar
  90. Tee A. R., Manning B. D., Roux P. P., Cantley L. C., and Blenis J. (2003) Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr. Biol. 13, 1259–1268.PubMedGoogle Scholar
  91. Thiele E. A. (2004) Managing epilepsy in tuberous sclerosis complex. J. Child Neurol. 19, 680–686.PubMedGoogle Scholar
  92. Uhlmann E. J., Wong M., Baldwin R. L., et al. (2002) Astrocyte-Specific TSC1 Conditional Knockout Mice Exhibit Abnormal Neuronal Organization and Seizures. Ann. Neurol. 52, 285–296.PubMedGoogle Scholar
  93. van Slegtenhorst M. and de Hoogt R. (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277, 805–808.PubMedGoogle Scholar
  94. van Slegtenhorst M., Nellist M., Nagelkerken B., et al. (1998) Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum. Mol. Genet. 7, 1053–1057.PubMedGoogle Scholar
  95. van Slegtenhorst M., Verhoef S., Tempelaars A., et al. (1999) Mutational spectrum of the TSC1 gene in cohort of 225 tuberous sclerosis complex patients: no evidence for genotype-phenotype correlation. J. Med. Genet. 36, 285–289.PubMedGoogle Scholar
  96. Weiner H. L. (2004) Tuberous sclerosis and multiple tubers: localizing the epileptogenic zone. Epilepsia 45 (Suppl. 4), 41–42.PubMedGoogle Scholar
  97. Wenzel H. J., Patel L. S., Robbins C. A., Emmi A., Yeung R. S., and Schwartzkroin P. A. (2004) Morphology of Cerebral Lesions in the Eker Rat Model of Tuberous Sclerosis. Acta Neuropathol. 108, 97–108.PubMedGoogle Scholar
  98. White R., Hua Y., Scheithauer B., Lynch D. R., Henske E. P., and Crino P. B. (2001) Selective Alterations in Glutamate and GABAReceptor Subunit mRNA Expression in Dysplastic Neurons and Giant Cells of Cortical Tubers. Ann. Neurol. 49, 67–78.PubMedGoogle Scholar
  99. Wienecke R., Maize J. C. Jr., Shoarinejad F., et al. (1996) Co-localization of the TSC2 product tuberin with its target Rap1 in the Golgi apparatus. Oncogene 13, 913–923.PubMedGoogle Scholar
  100. Wong M., Ess K. C., Uhlmann E. J., et al. (2003) Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann. Neurol. 54, 251–256.PubMedGoogle Scholar
  101. Xiao G. H., Shoarinejad F., Jin F., Golemis E. A., and Yeung R. S. (1997) The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J. Biol. Chem. 272, 6097–6100.PubMedGoogle Scholar
  102. Yamanouchi H., Jay V., Rutka J. T., Takashima S., and Becker L. E. (1997) Evidence of abnormal differentiation in giant cells of tuberous sclerosis. Pediatr. Neurol. 17, 49–53.PubMedGoogle Scholar
  103. Yeung R. S., Katsetos C. D., and Klein-Szanto A. (1997) Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am. J. Pathol. 151, 1477–1486.PubMedGoogle Scholar
  104. Zhang Y., Gao X., Saucedo L. J., Ru B., Edgar B. A., and Pan D. (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat. Cell Biol. 5, 578–581.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2006

Authors and Affiliations

  • Leah Marcotte
    • 1
  • Peter B. Crino
    • 1
  1. 1.Department of Neurology and PENN Epilepsy CenterUniversity of Pennsylvania Medical CenterPhiladelphia

Personalised recommendations