NeuroMolecular Medicine

, Volume 7, Issue 3, pp 243–253 | Cite as

T-cells in human encephalitis

Review Article


Encephalitis literally means inflammation of the brain. In general, this inflammation can result from a viral or bacterial infection in the brain itself or alternatively from a secondary autoimmune reaction against an infection or a tumor in the rest of the body. Besides this, encephalitis is present in (believed autoimmune) diseases with unknown etiology, such as multiple sclerosis or Rasmussen encephalitis (RE). This article summarizes the existing data on the role of T-cells in the pathogenesis of three types of human encephalitis: RE, paraneoplastic encephalomyelitis, and virus encephalitis. In all of them, T-cells play a major role in disease pathogenesis, mainly mediated by major histocompatiblity complex class I-restricted CD8+ T-lymphocytes.

Index Entries

Human T-cells Rasmussen encephalitis paraneoplastic encephalomyelitis virus encephalitis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achim C. L., Morey M. K., and Wiley C. A. (1991) Expression of major histocompatibility complex and HIV antigens within the brains of AIDS patients. AIDS 5, 535–541.PubMedGoogle Scholar
  2. Achim C. L. and Wiley C. A. (1992) Expression of major histocompatibility complex antigens in the brains of patients with progressive multifocal leukoen-cephalopathy. J. Neuropathol. Exp. Neurol. 51, 257–263.PubMedGoogle Scholar
  3. Alber M. L., Austin L. M., and Darnell R. B. (2000) Detection and treatment of activated T cells in the cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann. Neurol. 47, 9–17.Google Scholar
  4. Albert M. L., Darnell J. C., Bender A., Francisco L. M., Bhardwaj N., and Darnell R. B. (1998) Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nat. Med. 4, 1321–1324.PubMedGoogle Scholar
  5. An S. F., Ciardi A., Giometto B., Scaravilli T., Gray F., and Scaravilli F. (1996) Investigation on the expression of major histocompatibility complex class II and cytokines and detection of HIV-1 DNA within brains of asymptomatic and symptomatic HIV-1-positive patients. Acta Neuropathol. (Berl) 91, 494–503.Google Scholar
  6. Anlar B., Soylemezoglu F., Aysun S., Kose G., Belen D., and Yalaz K. (2001) Tissue inflammatory response in subacute sclerosing panencephalitis (SSPE). J. Child Neurol. 16, 895–900.PubMedGoogle Scholar
  7. Babbe H., Roers A., Waisman A., et al. (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192, 393–404.PubMedGoogle Scholar
  8. Basta S. and Bennink J. R. (2003) A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol. 16, 231–242.PubMedGoogle Scholar
  9. Bataller L. and Dalmau J. O. (2004) Paraneoplastic disorders of the central nervous system: update on diagnostic criteria and treatment. Semin. Neurol. 24, 461–471.PubMedGoogle Scholar
  10. Bauer J., Stadelmann C., Bancher C., Jellinger K., and Lassmann H. (1999) Apoptosis of T lymphocytes in acute disseminated encephalomyelitis. Acta Neuropathol. (Berl) 97, 543–546.Google Scholar
  11. Benyahia B., Liblau R., Merle Beral H., Tourani J. M., Dalmau J., and Delattre J. Y. (1999) Cell-mediated autoimmunity in paraneoplastic neurological syndromes with anti-Hu antibodies. Ann. Neurol. 45, 162–167.PubMedGoogle Scholar
  12. Bergmann C. C., Parra B., Hinton D. R., Chandran R., Morrison M., and Stohlman S. A. (2003) Perforin-mediated effector function within the central nervous system requires IFN-gamma-mediated MHC up-regulation. J. Immunol. 170, 3204–3213.PubMedGoogle Scholar
  13. Bergmann C. C., Parra B., Hinton D. R., Ramakrishna C., Dowdell K. C., and Stohlman S. A. (2004) Perforin and gamma interferon-mediated control of coronavirus central nervous system infection by CD8 T cells in the absence of CD4 T cells. J. Virol. 78, 1739–1750.PubMedGoogle Scholar
  14. Bernal F., Graus F., Pifarre A., Saiz A., Benyahia B., and Ribalta T. (2002) Immunohistochemical analysis of anti-Hu-associated paraneoplastic encephalomyelitis. Acta Neuropathol. (Berl) 103, 509–515.Google Scholar
  15. Bien C. G., Bauer J., Deckwerth T. L., et al. (2002a) Destruction of neurons by cytotoxic T cells: a new pathogenic mechanism in Rasmussen’s encephalitis. Ann. Neurol. 51, 311–318.PubMedGoogle Scholar
  16. Bien C. G., Gleissner U., Sassen R., Widman G., Urbach H., and Elger C. E. (2004) An open study of tacrolimus therapy in Rasmussen encephalitis. Neurology 62, 2106–2109.PubMedGoogle Scholar
  17. Bien C. G., Granata T., Antozzi C., et al. (2005) Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain 128, 454–471.PubMedGoogle Scholar
  18. Bien C. G., Widman G., Urbach H., et al. (2002b) The natural history of Rasmussen’s encephalitis. Brain 125, 1751–1759.PubMedGoogle Scholar
  19. Booss J. and Esiri M. M. (2003) Viral Encephalitis in Humans. Washington DC: ASM Press.Google Scholar
  20. Booss J., Esiri M. M., Tourtellotte W. W., and Mason D. Y. (1983) Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J. Neurol. Sci. 62, 219–232.PubMedGoogle Scholar
  21. Brankin B., Hart M. N., Cosby S. L., Fabry Z., and Allen I. V. (1995) Adhesion molecule expression and lymphocyte adhesion to cerebral endothelium: effects of measles virus and herpes simplex 1 virus. J. Neuroimmunol. 56, 1–8.PubMedGoogle Scholar
  22. Brierley J. B., Corsellis J. A. N., Hierons R., and Nevin S. (1960) Subacute encephalitis of later adult life mainly affecting the limbic areas. Brain 83, 357–368.Google Scholar
  23. Cher L. M., Hochberg F. H., Teruya J., et al. (1995) Therapy for paraneoplastic neurologic syndromes in six patients with protein A column immunoadsorption. Cancer 75, 1678–1683.PubMedGoogle Scholar
  24. Corradi J. P., Yang C., Darnell J. C., Dalmau J., and Darnell R. B. (1997) A post-transcriptional regulatory mechanism restricts expression of the paraneoplastic cerebellar degeneration antigen cdr2 to immune privileged tissues. J. Neurosci. 17, 1406–1415.PubMedGoogle Scholar
  25. Corsellis J. A., Goldberg G. J., and Norton A. R. (1968) “Limbic encephalitis” and its association with carcinoma. Brain 91, 481–496.PubMedGoogle Scholar
  26. Cunningham J., Graus F., Anderson N., and Posner J. B. (1986) Partial characterization of the Purkinje cell antigens in paraneoplastic cerebellar degeneration. Neurology 36, 1163–1168.PubMedGoogle Scholar
  27. Dalmau J., Furneaux H. M., Gralla R. J., Kris M. G., and Posner J. B. (1990) Detection of the anti-Hu antibody in the serum of patients with small cell lung cancer—a quantitative western blot analysis. Ann. Neurol. 27, 544–552.PubMedGoogle Scholar
  28. Dalmau J., Furneaux H. M., Rosenblum M. K., Graus F., and Posner J. B. (1991) Detection of the anti-Hu antibody in specific regions of the nervous system and tumor from patients with paraneoplastic encephalomyelitis/sensory neuronopathy. Neurology 41, 1757–1764.PubMedGoogle Scholar
  29. Darnell J. C., Albert M. L., and Darnell R. B. (2000) Cdr2, a target antigen of naturally occuring human tumor immunity, is widely expressed in gynecological tumors. Cancer Res. 60, 2136–2139.PubMedGoogle Scholar
  30. Du Pasquier R. A., Kuroda M. J., Zheng Y., Jean-Jacques J., Letvin N. L., and Koralnik I. J. (2004a) A prospective study demonstrates an association between JC virus-specific cytotoxic T lymphocytes and the early control of progressive multifocal leukoencephalopathy. Brain 127, 1970–1978.PubMedGoogle Scholar
  31. Du Pasquier R. A., Schmitz J. E., Jean-Jacques J., et al. (2004b) Detection of JC virus-specific cytotoxic T lymphocytes in healthy individuals. J. Virol. 78, 10,206–10,210.Google Scholar
  32. Farrell M. A., Droogan O., Secor D. L., Poukens V., Quinn B., and Vinters H. V. (1995) Chronic encephalitis associated with epilepsy: immunohistochemical and ultrastructural studies. Acta Neuropathol. Berl. 89, 313–321.PubMedGoogle Scholar
  33. Frei K., Leist T. P., Meager A., et al. (1988) Production of B cell stimulatory factor-2 and interferon gamma in the central nervous system during viral meningitis and encephalitis. Evaluation in a murine model infection and in patients. J. Exp. Med. 168, 449–453.PubMedGoogle Scholar
  34. Furneaux H. M., Rosenblum M. K., Dalmau J., et al. (1990) Selective expression of Purkinje-cell antigens in tumor tissue from patients with paraneoplastic cerebellar degeneration. N. Engl. J. Med. 322, 1844–1851.PubMedGoogle Scholar
  35. Gay F. W., Drye T. J., Dick G. W., and Esiri M. M. (1997) The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain 120, 1461–1483.PubMedGoogle Scholar
  36. Gogate N., Swoveland P., Yamabe T., et al. (1996) Major histocompatibility complex class I expression on neurons in subacute sclerosing panencephalitis and experimental subacute measles encephalitis. J. Neuropathol. Exp. Neurol. 55, 435–443.PubMedGoogle Scholar
  37. Graus F., Abos J., Roquer J., Mazzara R., and Pereira A. (1990a) Effect of plasmapheresis on serum and CSF autoantibody levels in CNS paraneoplastic syndromes. Neurology 40, 1621–1623.PubMedGoogle Scholar
  38. Graus F., Elkon K. B., Cordon-Cardo C., and Posner J. B. (1986) Sensory neuronopathy and small cell lung cancer. Antineuronal antibody that also reacts with the tumor. Am. J. Med. 80, 45–52.PubMedGoogle Scholar
  39. Graus F., Ribalta T., Campo E., Monforte R., Urbano A., and Rozman C. (1990b) Immunohistochemical analysis of the immune reaction in the nervous system in paraneoplastic encephalomyelitis. Neurology 40, 219–222.PubMedGoogle Scholar
  40. Gultekin S. H., Rosenfeld M. R., Voltz R., Eichen J., Posner J. B., and Dalmau J. (2000) Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumour association in 50 patients. Brain 123, 1481–1494.PubMedGoogle Scholar
  41. Hart Y. M., Andermann F., Fish D. R., et al. (1997) Chronic encephalitis and epilepsy in adults and adolescents: a variant of Rasmussen’s syndrome? Neurology 48, 418–424.PubMedGoogle Scholar
  42. Hayashi T., Morimoto C., Burks J. S., Kerr C., and Hauser S. L. (1988) Dual-label immunocytochemistry of the active multiple sclerosis lesion: major histocompatibility complex and activation antigens. Ann. Neurol. 24, 523–531.PubMedGoogle Scholar
  43. Henson R. A., Hoffman H. L., and Urich H. (1965) Encephalomyelitis with carcinoma. Brain 88, 449–464.PubMedGoogle Scholar
  44. Hodgson P. D., Grant M. D., and Michalak T. I. (1999) Perforin and Fas/Fas ligand-mediated cytotoxicity in acute and chronic woodchuck viral hepatitis. Clin. Exp. Immunol. 118, 63–70.PubMedGoogle Scholar
  45. Houtman J. J. and Fleming J. O. (1995) Pathogenesis of mouse hepatitis virus-induced demyelination. J. Neurovirol. 2, 361–376.Google Scholar
  46. Hudson S. J. and Streilein J. W. (1994) Functional cytotoxic T cells are associated with focal lesions in the brains of SJL mice with experimental herpes simplex encephalitis. J. Immunol. 152, 5540–5547.PubMedGoogle Scholar
  47. Jaeckle K. A., Graus F., Houghton A., Cardon-Cardo C., Nielsen S. L., and Posner J. B. (1985) Autoimmune response of patients with paraneoplastic cerebellar degeneration to a Purkinje cell cytoplasmic protein antigen. Ann. Neurol. 18, 592–600.PubMedGoogle Scholar
  48. Keime-Guibert F., Graus F., Broet P., et al. (1999) Clinical outcome of patients with anti-Hu-associated encephalomyelitis after treatment of the tumor. Neurology 53, 1719–1723.PubMedGoogle Scholar
  49. Keime-Guibert F., Graus F., Fleury A., et al. (2000) Treatment of paraneoplastic neurological syndromes with antineuronal antibodies (Anti-Hu, anti-Yo) with a combination of immunoglobulins, cyclophosphamide, and methylprednisolone. J. Neurol. Neurosurg. Psychiatry 68, 479–482.PubMedGoogle Scholar
  50. Kennedy P. G., Barrass J. D., Graham D. I., and Clements G. B. (1990) Studies on the pathogenesis of neurological diseases associated with Varicella-Zoster virus. Neuropathol. Appl. Neurobiol. 16, 305–316.PubMedGoogle Scholar
  51. Kleinschmidt-DeMasters B. K. and Tyler K. L. (2005) Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. NEJM 353, 369–374.PubMedGoogle Scholar
  52. Langer-Gould A., Atlas S. W., Green A. J., et al. (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. NEJM 353, 375–381.PubMedGoogle Scholar
  53. Li Y., Uccelli A., Laxer K. D., et al. (1997) Local-clonal expansion of infiltrating T lymphocytes in chronic encephalitis of Rasmussen. J. Immunol. 158, 1428–1437.PubMedGoogle Scholar
  54. Lieberman J., Manjunath N., and Shankar P. (2002) Avoiding the kiss of death: how HIV and other chronic viruses survive. Curr. Opin. Immunol. 14, 478–486.PubMedGoogle Scholar
  55. Liebert U. G. and ter Meulen V. (1987) Virological aspects of measles virus-induced encephalomyelitis in Lewis and BN rats. J. Gen. Virol. 68, 1715–1722.PubMedGoogle Scholar
  56. Linda H., Hammarberg H., Cullheim S., Levinovitz A., Khademi M., and Olsson T. (1998) Expression of MHC class I and beta2-microglobulin in rat spinal motoneurons: regulatory influences by IFN-gamma and axotomy. Exp. Neurol. 150, 282–295.PubMedGoogle Scholar
  57. Liu T. and Chambers T. J. (2001) Yellow fever virus encephalitis: properties of the brain-associated T-cell response during virus clearance in normal and gamma interferon-deficient mice and requirement for CD4+lymphocytes. J. Virol. 75, 2107–2118.PubMedGoogle Scholar
  58. Mantegazza R., Bernasconi P., Baggi F., et al. (2002) Antibodies against GluR3 peptides are not specific for Rasmussen’s encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. J. Neuroimmunol. 131, 179–185.PubMedGoogle Scholar
  59. Morris M. M., Dyson H., Baker D., Harbige L. S., Fazakerley J. K., and Amor S. (1997) Characterization of the cellular and cytokine response in the central nervous system following Semliki Forest virus infection. J. Neuroimmunol. 74, 185–197.PubMedGoogle Scholar
  60. Murray P. D., McGavern D. B., Lin X., et al. (1998a) Perforin-dependent neurologic injury in a viral model of multiple sclerosis. J. Neurosci. 18, 7306–7314.PubMedGoogle Scholar
  61. Murray P. D., Pavelko K. D., Leibowitz J., Lin X., and Rodriguez M. (1998b) CD4(+) and CD8(+) T cells make discrete contributions to demyelination and neurologic disease in a viral model of multiple sclerosis. J. Virol. 72, 7320–7329.PubMedGoogle Scholar
  62. Nagano I., Nakamura S., Yoshioka M., and Kogure K. (1991) Immunocytochemical analysis of the cellular infiltrate in brain lesions in subacute sclerosing panencephalitis. Neurology 41, 1639–1642.PubMedGoogle Scholar
  63. Nicoll J. A., Love S., and Kinrade E. (1993) Distribution of herpes simplex virus DNA in the brains of human long-term survivors of encephalitis. Neurosci. Lett. 157, 215–218.PubMedGoogle Scholar
  64. Nicoll J. A., Maitland N. J., and Love S. (1991a) Autopsy neuropathological findings in burnt out’ herpes simplex encephalitis and use of the polymerase chain reaction to detect viral DNA. Neuropathol. Appl. Neurobiol. 17, 375–382.PubMedGoogle Scholar
  65. Nicoll J. A., Maitland N. J., and Love S. (1991b) Use of the polymerase chain reaction to detect herpes simplex virus DNA in paraffin sections of human brain at necropsy. J. Neurol. Neurosurg. Psychiatry 54, 167–168.PubMedGoogle Scholar
  66. Noske K., Bilzer T., Planz O., and Stitz L. (1998) Virus-specific CD4+ T cells eliminate borna disease virus from the brain via induction of cytotoxic CD8+ T cells. J. Virol. 72, 4387–4395.PubMedGoogle Scholar
  67. Oguni H., Andermann F., and Rasmussen T. B. (1992) The syndrome of chronic encephalitis and epilepsy. A study based on the MNI series of 48 cases. Adv. Neurol. 57, 419–433.PubMedGoogle Scholar
  68. Okano H. J., Park W. Y., Corradi J. P., and Darnell R. B. (1999) The cytoplasmic Purkinje onconeural antigen cdr2 down-regulates c-Myc function: implications for neuronal and tumor cell survival. Genes Dev. 13, 2087–2097.PubMedGoogle Scholar
  69. Panegyres P. K., Reading M. C., and Esiri M. M. (1993) The inflammatory reaction of paraneoplastic ganglionitis and encephalitis: an immunohistochemical study. J. Neurol. 240, 93–97.PubMedGoogle Scholar
  70. Pardo C. A., Vining E. P., Guo L., Skolasky R. L., Carson B. S., and Freeman J. M. (2004) The pathology of Rasmussen syndrome: stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia 45, 516–526.PubMedGoogle Scholar
  71. Parra B., Hinton D. R., Marten N. W., et al. (1999) IFN-gamma is required for viral clearance from central nervous system oligodendroglia. J. Immunol. 162, 1641–1647.PubMedGoogle Scholar
  72. Pellkofer H., Schubart A. S., Hoftberger R., et al. (2004) Modelling paraneoplastic CNS disease: T-cells specific for the onconeuronal antigen PNMA1 mediate autoimmune encephalomyelitis in the rat. Brain 127, 1822–1830.PubMedGoogle Scholar
  73. Petito C. K., Adkins B., McCarthy M., Roberts B., and Khamis I. (2003) CD4+ and CD8+ cells accumulate in the brains of acquired immunodeficiency syndrome patients with human immunodeficiency virus encephalitis. J. Neurovirol. 9, 36–44.PubMedGoogle Scholar
  74. Pewe L. and Perlman S. (2002) Cutting edge: CD8 T cell-mediated demyelination is IFN-gamma dependent in mice infected with a neurotropic coronavirus. J. Immunol. 168, 1547–1551.PubMedGoogle Scholar
  75. Planz O., Bilzer T., and Stitz L. (1995) Immunopathogenic role of T-cell subsets in Borna disease virus-induced progressive encephalitis. J. Virol. 69, 896–903.PubMedGoogle Scholar
  76. Ploegh H. L. (1998) Viral strategies of immune evasion. Science 280, 248–253.PubMedGoogle Scholar
  77. Pullen L. C., Miller S. D., Dal Canto M. C., and Kim B. S. (1993) Class I-deficient resistant mice intracerebrally inoculated with Theiler’s virus show an increased T cell response to viral antigens and susceptibility to demyelination. Eur. J. Immunol. 23, 2287–2293.PubMedGoogle Scholar
  78. Rasmussen T., Olszewski J., and Lloyd-Smith D. (1958) Focal seizures due to chronic localized encephalitis. Neurology 8, 435–445.PubMedGoogle Scholar
  79. Roberts W. K. and Darnell R. B. (2004) Neuroimmunology of the paraneoplastic neurological degenerations. Curr. Opin. Immunol. 16, 616–622.PubMedGoogle Scholar
  80. Rodriguez M., Pavelko K. D., Njenga M. K., Logan W. C., and Wettstein P. J. (1996) The balance between persistent virus infection and immune cells determines demyelination. J. Immunol. 157, 5699–5709.PubMedGoogle Scholar
  81. Rogers S. W., Andrews P. I., Gahring L. C., et al. (1994) Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science 265, 648–651.PubMedGoogle Scholar
  82. Schneider-Schaulies J., Schneider-Schaulies S., and ter-Meulen V. (1993) Differential induction of cytokines by primary and persistent measles virus infections in human glial cells. Virology 195, 219–228.PubMedGoogle Scholar
  83. Sheridan C. (2005) Tysabri raises alarm bells on drug class. Nat. Biotechnol. 23, 397–398.PubMedGoogle Scholar
  84. Shrestha B. and Diamond M. S. (2004) Role of CD8+ T cells in control of West Nile virus infection. J. Virol. 78, 8312–8321.PubMedGoogle Scholar
  85. Sillevis Smitt P. A., Manley G. T., and Posner J. B. (1995) Immunization with the paraneoplastic encephalomyelitis antigen HuD does not cause neurologic disease in mice. Neurology 45, 1873–1878.PubMedGoogle Scholar
  86. Soilu-Hanninen M., Roytta M., Salmi, A. A., and Salonen R. (1997) Semliki Forest virus infection leads to increased expression of adhesion molecules on splenic T-cells and on brain vascular endothelium. J. Neurovirol. 3, 350–360.PubMedGoogle Scholar
  87. Stevenson P. G., Hawke S., and Bangham C. R. (1996) Protection against lethal influenza virus encephalitis by intranasally primed CD8+ memory T cells. J. Immunol. 157, 3065–3073.PubMedGoogle Scholar
  88. Szabo A., Dalmau J., Manley, G., et al. (1991) HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to Elav and Sex-lethal. Cell 67, 325–333.PubMedGoogle Scholar
  89. Tanaka K., Tanaka M., Inuzuka T., Nakano R., and Tsuji S. (1999) Cytotoxic T-lymphocyte-mediated cell death in paraneoplastic sensory neuronopathy with anti-Hu antibody. J. Neurol. Sci. 163, 159–162.PubMedGoogle Scholar
  90. Tanaka M., Tanaka K., Onodera O., et al. (1995) Trial to establish an animal model of paraneoplastic cerebellar degeneration with anti-Yo antibody. Clin. Neurol. Neurosurg. 97, 95–100.PubMedGoogle Scholar
  91. Tekgul H., Polat M., Kitis O., et al. (2005) T-cell subsets and interleukin-6 response in Rasmussen’s encephalitis. Pediatr. Neurol. 33(1), 39–45.PubMedGoogle Scholar
  92. van der Most R. G., Murali-Krishna K., and Ahmed R. (2003) Prolonged presence of effector-memory CD8 T cells in the central nervous system after dengue virus encephalitis. Int. Immunol. 15, 119–125.PubMedGoogle Scholar
  93. Verschuuren J., Chuang L., Rosenblum M. K., et al. (1996) Inflammatory infiltrates and complete absence of Purkinje cells in anti-Yo-associated paraneoplastic cerebellar degeneration. Acta Neuropathol. Berl. 91, 519–525.PubMedGoogle Scholar
  94. Voltz R. (2002) Paraneoplastic neurological syndromes: an update on diagnosis, pathogenesis, and therapy. Lancet Neurol. 1, 294–305.PubMedGoogle Scholar
  95. Voltz R., Dalmau J., Posner J. B., and Rosenfeld M. R. (1998) T-cell receptor analysis in anti-Hu associated paraneoplastic encephalomyelitis. Neurology 51, 1146–1150.PubMedGoogle Scholar
  96. Wang F. I., Stohlman S. A., and Fleming J. O. (1990) Demyelination induced by murine hepatitis virus JHM strain (MHV-4) is immunologically mediated. J. Neuroimmunol. 30, 31–41.PubMedGoogle Scholar
  97. Watanabe R., Wege H., and ter Meulen, V. (1987) Comparative analysis of coronavirus JHM-induced demyelinating encephalomyelitis in Lewis and Brown Norway rats. Lab. Invest. 57, 375–384.PubMedGoogle Scholar
  98. Watson R., Jiang Y., Bermudez I., et al. (2004) Absence of antibodies to glutamate receptor type 3 (GluR3) in Rasmussen encephalitis. Neurology 63, 43–50.PubMedGoogle Scholar
  99. Wiendl H., Bien C. G., Bernasconi P., et al. (2001) GluR3 antibodies: Prevalence in focal epilepsy but no specificity for Rasmussen’s encephalitis. Neurology 57, 1511–1514.PubMedGoogle Scholar
  100. Woodroofe M. N., Bellamy A. S., Feldmann M., Davison A. N., and Cuzner M. L. (1986) Immunocytochemical characterisation of the immune reaction in the central nervous system in multiple sclerosis. Possible role for microglia in lesion growth. J. Neurol. Sci. 74, 135–152.PubMedGoogle Scholar
  101. Wu G. F., Dandekar A. A., Pewe L., and Perlman S. (2000) CD4 and CD8 T-cells have redundant but not identical roles in virus-induced demyelination. J. Immunol. 165, 2278–2286.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  1. 1.Department of EpileptologyUniversity of BonnBonnGermany
  2. 2.Center for Brain Research, Division of NeuroimmunologyMedical University of ViennaViennaAustria

Personalised recommendations