Skip to main content
Log in

Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice

  • Original Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases (MMPs) are proteolytic enzymes capable of degrading components of the extracellular matrix. Recent evidence has implicated MMPs in the pathogenesis of neurodegenerative diseases as Alzheimer’s disease and amyotrophic lateral sclerosis. In this study, we investigated the involvement of MMP-9 (gelatinase B) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease using zymography, immunohistochemistry, and Western blot analysis. The activity of MMP-9 was upregulated at 3 h after MPTP injection in the striatum and after 24 h in the substantia nigra. Although MMP-9 expression decreased in the striatum by 72 h, it remained elevated in the substantia nigra compared to controls up to 7 d after MPTP administration. Immunohistochemistry showed that neurons and microglia are the source of MMP-9 expression after MPTP administration to mice. Treatment with a hydroxamate-based MMP inhibitor, Ro 28-2653 significantly reduced dopamine depletion and loss of tyrosine hydroxylase immunoreactive neurons in the substantia nigra pars compacta. MMP-9 expression as measured via zymography in the substantia nigra was reduced by the MMP inhibitor. These results indicate that MMP-9 is induced after MPTP application in mice and that pharmacologic inhibition of MMPs protects against MPTP neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asahi M., Sumii T., Fini M. E., Itohara S., and Loh E. (2001) Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia. Neuroreport 12, 3003–3007.

    Article  PubMed  CAS  Google Scholar 

  • Asahina M., Yoshiyama Y., and Hattori T. (2001) Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin. Neuropathol. 20, 60–63.

    PubMed  CAS  Google Scholar 

  • Beal M. F. (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann. Neurol. 38, 357–366.

    Article  PubMed  CAS  Google Scholar 

  • Beal M. F. (1998) Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann. Neurol. 44(3 Suppl. 1), S110-S114.

    PubMed  CAS  Google Scholar 

  • Beuche W., Yushchenko M., Mader M., Maliszewska M., Felgenhauer K., and Weber F. (2000) Matrix metalloproteinase-9 is elevated in serum of patients with amyotrophic lateral sclerosis. Neuroreport 11, 3419–3422.

    Article  PubMed  CAS  Google Scholar 

  • Clark A., Krekoski C. A., Bou S. S., Chapman K. R., and Edwards D. R. (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci. Lett. 238, 53–55.

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall R. E. (1992) Aconsideration of neural counting methods. Trends Neurosci. 15, 9–13.

    Article  PubMed  CAS  Google Scholar 

  • Date I., Felton D. L., and Felton S. Y. (1990) Long-term effect of MPTP in the mouse brain in relation to ageing: neurochemical and immunocytochemical analysis. Brain Res. 519, 266–276.

    Article  PubMed  CAS  Google Scholar 

  • Duchenin A. M., Gudehithlu K. P., Neff N. H., and Hadjiconstantinou M. (1992) C-fos mRNA in mouse brain after MPTP treatment. Neurochem. Int. 20, 281–287.

    Article  Google Scholar 

  • Fini M. E., Cook J. R., Mohan R., and Brinckerhoff C. E. (1998) Regulation of matrix metalloproteinase gene expression. In Matrix Metalloproteinases. Parks W. C. and Mecham R. P. (eds.). New York: Academic Press, pp. 299–356.

    Google Scholar 

  • Fujimura M., Gasche Y., Morita-Fujimura Y., Massengale J., Kawase M., and Chan P. H. (1999) Early appearance of activated matrix metalloproteinase-9 and blood-brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res. 842, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Gijbels K., Proost P., Masure S., Carton H., Biliau A., and Opdenakker G. (1993) Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J. Neurosci. Res. 36, 432–440.

    Article  PubMed  CAS  Google Scholar 

  • Gu Z., Kaul M., Yab B., Kridel S. J., Cui J., Strongin A., et al. (2002) S-Nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297, 1186–1190.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch E. C., Breidert T., Rousselet E., Hunot S., Hartmann A., and Michel P.P. (2003) The role of glial reaction and inflammation in Parkinson’s disease. Ann. NY Acad. Sci. 991, 214–228.

    Article  PubMed  CAS  Google Scholar 

  • Ihara M., Tomimoto H., Kinoshita M., Oh J., Noda M., Wakita H., et al. (2001) Chronic cerebral hypoperfusion induces MMP-2 but not MMP-9 expression in the microglia and vascular endothelium of white matter. J. Cereb. Blood Flow Metab. 21, 828–834.

    Article  PubMed  CAS  Google Scholar 

  • Jung K., Krell H. W., Ortel B., Hasan T., Romer A., Schnorr D., et al. (2003) Plasma matrix metalloproteinase 9 as biomarker of prostate cancer progression in Dunning (Copenhagen) rats. Prostate 54, 206–211.

    Article  PubMed  CAS  Google Scholar 

  • Kaur D., Yantiri F., Rajagopalan S., Kumar J., Mo J. Q., Boonplueang R., et al. (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37, 899–909.

    Article  PubMed  CAS  Google Scholar 

  • Kim G. W., Gasche Y., Grzeschik S., Copin J. C., Maier C. M., and Chan P. H. (2003) Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: role of matrix metalloproteinase-9 in early blood brain barrier disruption? J. Neurosci. 23, 8733–8742.

    PubMed  CAS  Google Scholar 

  • Kleiner D. E. and Stetler-Stevenson W. G. (1994) Quantitative zymography: detection of picogram quantities of gelatinases. Anal. Biochem. 218, 325–329.

    Article  PubMed  CAS  Google Scholar 

  • Kurkowska-Jastrzebska I., Wronska A., Kohutnicka M., Czlonkowski A., and Czlonkowska A. (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxication in mouse. Exp. Neurol. 156, 50–61.

    Article  PubMed  CAS  Google Scholar 

  • Kurlan R, Kim M. H., and Gash D. M. (1991) The time course and magnitude of spontaneus recovery of parkinsonism produced by intracarotid administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to monkeys. Ann. Neurol. 29, 677–679.

    Article  PubMed  CAS  Google Scholar 

  • Langston J. W., Ballard P., Tetrud J. W., and Irwin I. (1983) Chronic parkinsonism in humans due to produce of meperidine-analog synthesis. Science 219, 979–980.

    Article  PubMed  CAS  Google Scholar 

  • Leake A., Morris C. M., and Whateley J. (2000) Brain matrix metalloproteinase 1 levels are elevated in Alzheimer’s disease. Neurosci. Lett. 291, 201–203.

    Article  PubMed  CAS  Google Scholar 

  • Lim G., Backstrom J. R., Cullen M. J., et al. (1996) Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients. J. Neurochem. 67, 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzl S., Albers D. S., Narr S., Chirichigno J., and Beal M. F. (2002) Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp. Neurol. 178, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzl S., Albers D. S., Relkin N., Ngyuen T., Hilgenberg S. L., Chirichigno J., et al. (2003) Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem. Int. 43, 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Maeda A. and Sobel R. A. (1996) Matrix metalloproteinases in the normal human central nervous system, microglia nodules, and multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 55, 300–309.

    PubMed  CAS  Google Scholar 

  • Miyazaki K., Hasegawa M., Funahashi K., and Umeda M. (1993) A metallopreoteinase inhibitor domain in Alzheimer amyloid protein precursor. Nature 362, 839–841.

    Article  PubMed  CAS  Google Scholar 

  • Nagase H. and Woessner J. F. (1999) matrix metalloproteinases: a minireview. J. Biol. Chem. 274, 21,491–21,494.

    Article  CAS  Google Scholar 

  • Nishi K. (1997) Expression of c-Jun in dopaminergic neurons of the substantia nigra in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Brain Res. 771, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • O’Callaghan J. P., Martin P. M., and Mass M. J. (1998) The MAP kinase cascade is activated prior to the induction of gliosis in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of dopaminergic neurotoxicity. Ann. NY Acad. Sci. 844, 40–49.

    Article  PubMed  CAS  Google Scholar 

  • Paul R., Lorenzl S., Koedel U., Sporer B., Vogel U., Frosch M., et al. (1998) Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann. Neurol. 44, 592–600.

    Article  PubMed  CAS  Google Scholar 

  • Peres N., Perillo E., and Zucker S. (1995) Localization of tissue inhibitor of matrix metalloproteinases in Alzheimer’s disease and normal brain. J. Neuropathol. Exp. Neurol. 54, 16–22.

    Google Scholar 

  • Saporito M. S., Thomas B. A., and Scott R. W. (2000) MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J. Neurochem. 75, 1200–1208.

    Article  PubMed  CAS  Google Scholar 

  • Sugama S., Yang L., Cho B. P., DeGiorgio L. A., Lorenzl S., Albers D. A., et al. (2003) Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57Bl mice. Brain Res. 964, 288–294.

    Article  PubMed  CAS  Google Scholar 

  • Szklarczyk A., Lapinska J., Rylski M., McKay R. D. G., and Kaczmarek L. (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J. Neurosci. 22, 920–930.

    PubMed  CAS  Google Scholar 

  • Tipton K. F. and Singer T. P. (1993). Advances in our understanding of the mechnisms of the neurotoxicity of MPTP and related compounds. J. Neurochem. 61, 1191–1206.

    Article  PubMed  CAS  Google Scholar 

  • Turmel H., Hartmann A., Parain K., Douhou A., Srinivasan A., Agid Y., et al. (2001) Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated mice. Mov. Disord. 16, 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Viswanth V., Wu Y., Boonplueang R., Chen S., Stevenson F. F., Yantri F., et al. (2001) Caspase-9 activation results in downstream caspase-8 activation and bid cleavage in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease. J. Neurosci. 21, 9519–9528.

    Google Scholar 

  • Wang X., Mori T., Jung J. C., Fini M. E., and Lo E. H. (2002) Secretion of matrix metalloproteinase-2 and -9 after mechanical trauma injury in rat cortical cultures and involvement of MAP kinase. J. Neurotrauma 19, 615–625.

    Article  PubMed  Google Scholar 

  • Yang L., Schulz J. B., Klockgether T., Liao A. W., Martinou J. C., Penney J. B. Jr., et al. (1998) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity is attenuated in mice overexpressing Bcl-2. J. Neurosci. 18, 8145–8152.

    PubMed  CAS  Google Scholar 

  • Yoshiyama Y., Ashina M., and Hattori T. (2000) Selective distribution of matrix metalloproteinase-3 (MMP-3) in Alzheimer’s disease brain. Acta Neuropathol. 99, 91–95.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J. W. and Gottschall P. E. (1997) Zymographic measurement of gelatinase activity in brain tissue after detergent extraction and affinity-support purification. J. Neurosci. Methods 76, 15–20.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J. W., Deb S., and Gottschall P. E. (1998) Regional and differential expression of gelatinases in rat brain after systemic kainic acid or bicuculline administration. Eur. J. Neurosci. 10, 3358–3368.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W. J., Deb S., and Gottschall P. E. (2000) Regional and age-related expression of gelatinases in the brains of young and old rats after treatment with kainic acid. Neurosci. Lett. 295, 9–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Flint Beal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzl, S., Calingasan, N., Yang, L. et al. Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuromol Med 5, 119–131 (2004). https://doi.org/10.1385/NMM:5:2:119

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:5:2:119

Index Entries

Navigation