NeuroMolecular Medicine

, Volume 4, Issue 1–2, pp 133–146 | Cite as

Making yeast tremble

Yeast models as tools to study neurodegenerative disorders


Genetic experiments in mice, which are indispensable for studying the molecular basis of neurological disorders, have certain limitations that include slow pace and high costs. It is therefore not surprising that in recent years numerous neurological diseases have been modeled in genetically tractable organisms, including Drosophila, Caenorhabditis elegans, and yeast. Yeast models in particular have a special advantage with respect to genome-wide experimental approaches as a result of the completed sequencing of the genome, the availability of a collection of precise deletion mutants of every gene in the genome, and the rapidly evolving databases of yeast protein-protein interactions and gene expression patterns. These large and easily accessible bodies of information, coupled with the ease with which yeast can be manipulated genetically, have led to dissection of novel mechanisms of neurodegenerative disorders. In this review, we discuss how studies in yeast models have already resulted in significant insights into the understanding of neurodegenerative disorders that include prion disease, Parkinson’s disease, polyglutamine expansion disorders, Friedreich’s ataxia, and Batten disease.

Index entries

Neurological disorders yeast prions polyglutamine protein aggregation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anton L. C., Schubert U., Bacik I., et al. (1999) Intracellular localization of proteasomal degradation of a viral antigen. J. Cell Biol. 146, 113–124.PubMedGoogle Scholar
  2. Babcock M., de Silva D., Oaks R., et al. (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276, 1709–1712.PubMedCrossRefGoogle Scholar
  3. Bailleul P. A., Newnam G. P., Steenbergen J. N., and Chernoff, Y. O. (1999) Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics. 153, 81–94.PubMedGoogle Scholar
  4. Bates G. P., Mangiarini L, and Davies, S. W. (1998) Transgenic mice in the study of polyglutamine repeat expansion diseases (review). Brain Pathol. 8, 699–714.PubMedCrossRefGoogle Scholar
  5. Bence N. F., Sampat R. M., and Kopito, R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.PubMedCrossRefGoogle Scholar
  6. Beranger F., Mange A., Goud B., and Lehmann, S. (2002) Stimulation of PrP(C) retrograde transport toward the endoplasmic reticulum increases accumulation of PrP(Sc) in prion-infected cells. J. Biol. Chem. 277, 38972–38977.PubMedCrossRefGoogle Scholar
  7. Bhattacharyya S, Rolfsmeier M. L., Dixon M. J., Wagoner K, and Lahue, R. S. (2002) Identification of RTG2 as a modifier gene for CTG*CAG repeat instability in Saccharomyces cerevisiae. Genetics. 162, 579–589.PubMedGoogle Scholar
  8. Birrell G. W., Giaever G, Chu A. M., Davis R. W., and Brown, J. M. (2001) A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc. Natl. Acad. Sci. USA 98, 12608–12613.PubMedCrossRefGoogle Scholar
  9. Bradley J. L., Blake J. C., Chamberlain S, et al. (2000) Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum. Mol. Genet. 9, 275–282.PubMedCrossRefGoogle Scholar
  10. Campuzano V., Montermini L., Molto M. D., et al. (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427.PubMedCrossRefGoogle Scholar
  11. Cavadini P., Gellera C., Patel P. I., and Isaya, G. (2000) Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum. Mol. Genet. 9:2523–2530.PubMedCrossRefGoogle Scholar
  12. Chan T. F., Carvalho J., Riles L., and Zheng, X. F. (2000) A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl. Acad. Sci. USA 97, 13227–13232.PubMedCrossRefGoogle Scholar
  13. Chernoff Y.O., Uptain S. M., and Lindquist S. L. (2002) Analysis of prion factors in yeast. Methods Enzymol. 351, 499–538.PubMedGoogle Scholar
  14. Chernoff Y. O. (2001) Mutation processes at the protein level: is Lamarck back? Mutat. Res. 488, 39–64.PubMedCrossRefGoogle Scholar
  15. Clow A., Greenhalf W., and Chaudhuri, B. (1998) Under respiratory growth conditions, Bcl-x(L) and Bcl-2 are unable to overcome yeast cell death triggered by a mutant Bax protein lacking the membrane anchor. Eur. J. Biochem. 258, 19–28.PubMedCrossRefGoogle Scholar
  16. Conway K. A., Lee S. J., Rochet J. C., et al. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576.PubMedCrossRefGoogle Scholar
  17. Cooper A. J., Sheu K. F., Burke J. R., et al. (1997) Polyglutamine domains are substrates of tissue transglutaminase: does transglutaminase play a role in expanded CAG/poly-Q neurodegenerative diseases? J. Neurochem. 69, 431–434.PubMedCrossRefGoogle Scholar
  18. DePace A. H., Santoso, A., Hillner P., and Weissman, J. S. (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252.PubMedCrossRefGoogle Scholar
  19. Derkatch I. L., Bradley M. E., Hong J. Y., and Liebman, S. W. (2001) Prions affect the appearance of other prions: the story of [PIN+]. Cell 106, 171–182.PubMedCrossRefGoogle Scholar
  20. Derkatch I. L., Bradley M. E., Zhou P, Chernoff Y. O., and Liebman, S. W. (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147, 507–519.PubMedGoogle Scholar
  21. Eigen, M. (1996) Prionics or the kinetic basis of prion diseases. Biophys. Chem. 63, A1-A18.PubMedCrossRefGoogle Scholar
  22. Fabunmi R. P., Wigley W. C., Thomas P. J., and DeMartino, G. N. (2000) Activity and regulation of the centrosome-associated proteasome. J. Biol. Chem. 275, 409–413.PubMedCrossRefGoogle Scholar
  23. Feldman D. E. and Frydman J. (2000) Protein folding in vivo: the importance of molecular chaperones. Curr. Opin. Struct. Biol. 10, 26–33.PubMedCrossRefGoogle Scholar
  24. Foury F. and Cazzalini O. (1997) Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett. 411, 373–377.PubMedCrossRefGoogle Scholar
  25. Frohlich K. U. and Madeo, F. (2001) Apoptosis in yeast: a new model for aging research. Exp. Gerontol. 37, 27–31.PubMedCrossRefGoogle Scholar
  26. Frydman, J. (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647.PubMedCrossRefGoogle Scholar
  27. Garcia-Mata R, Bebok, Z., Sorscher E. J., and Sztul E. S. (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J. Cell Biol. 146, 1239–1254.PubMedCrossRefGoogle Scholar
  28. Gardiner, R. M. (1993) Genetic analysis of Batten disease. J. Inherit. Metab. Dis. 16, 787–790.PubMedCrossRefGoogle Scholar
  29. Giaever G., Chu A.M., Ni L., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.PubMedCrossRefGoogle Scholar
  30. Glickman M. H. and Ciechanover A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428.PubMedGoogle Scholar
  31. Goedert, M. (2001) The significance of tau and alpha-synuclein inclusions in neurodegenerative diseases. Curr. Opin. Genet. Dev. 11, 343–351.PubMedCrossRefGoogle Scholar
  32. Golabek A. A., Kida, E., Walus M., et al. (2000) CLN3 protein regulates lysosomal pH and alters intracellular processing of Alzheimer’s amyloid-beta protein precursor and cathepsin D in human cells. Mol. Genet. Metab. 70, 203–213.PubMedCrossRefGoogle Scholar
  33. Greenhalf W., Stephan C., and Chaudhuri B. (1996) Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett. 380, 169–175.PubMedCrossRefGoogle Scholar
  34. Gu Y, Verghese S., Mishra R. S., et al. (2003) Mutant prion protein-mediated aggregation of normal prion protein in the endoplasmic reticulum: implications for prion propagation and neurotoxicity. J. Neurochem. 84, 10–22.PubMedCrossRefGoogle Scholar
  35. Guarente L. (2001) SIR2 and aging—the exception that proves the rule. Trends Genet. 17, 391–392.PubMedCrossRefGoogle Scholar
  36. Guarente L. and Kenyon C. (2000) Genetic pathways that regulate ageing in model organisms. Nature 408, 255–262.PubMedCrossRefGoogle Scholar
  37. Hall N. A., Lake B. D., and Patrick A. D. (1991) Recent biochemical and genetic advances in our understanding of Batten’s disease (ceroid-lipofuscinosis). Dev. Neurosci. 13, 339–344.PubMedGoogle Scholar
  38. Haskell R. E., Carr C. J., Pearce D. A., Bennett M. J., and Davidson B. L. (2000) Batten disease: evaluation of CLN3 mutations on protein localization and function. Hum. Mol. Genet. 9, 735–744.PubMedCrossRefGoogle Scholar
  39. Hattula K. and Peranen J. (2000) FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis. Curr. Biol. 10, 1603–1606.PubMedCrossRefGoogle Scholar
  40. Hershko A. and Ciechanover A. (1998) The ubiquitin system (review). Annu. Rev. Biochem. 67, 425–479.PubMedCrossRefGoogle Scholar
  41. Igarashi S., Koide R., Shimohata T., et al. (1998) Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat. Genet. 18, 111–117.PubMedCrossRefGoogle Scholar
  42. Ireland M. J., Reinke S. S., and Livingston D. M. (2000) The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast. Genetics 155, 1657–165.PubMedGoogle Scholar
  43. Jakupciak J. P. and Wells R. D. (2000) Genetic instabilities of triplet repeat sequences by recombination. IUBMB Life 50, 355–359.PubMedCrossRefGoogle Scholar
  44. James C., Gschmeissner S., Fraser A., and Evan G. I. (1997) CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9. Curr. Biol. 7, 246–252.PubMedCrossRefGoogle Scholar
  45. Johnston J. A., Illing M. E., and Kopito R. R. (2002) Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskeleton 53, 26–38.PubMedCrossRefGoogle Scholar
  46. Johnston J. A., Ward C. L., and Kopito R. R. (1998) Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.PubMedCrossRefGoogle Scholar
  47. Kaeberlein M., McVey M., and Guarente L. (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580.PubMedCrossRefGoogle Scholar
  48. Kahlem P., Green H., and Djian P. (1998) Transglutaminase as the agent of neurodegenerative diseases due to polyglutamine expansion. Pathologie Biologie 46, 681–682.PubMedGoogle Scholar
  49. Kang J. J., Schaber M. D., Srinivasula S. M., et al. (1999) Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 3189–3198.PubMedCrossRefGoogle Scholar
  50. Kaufman R. J., Scheuner, D., Schroder, M., et al. (2002) The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell Biol. 3, 411–421.PubMedCrossRefGoogle Scholar
  51. Knight S. A., Kim R., Pain D., and Dancis A. (1999) The yeast connection to Friedreich ataxia. Am. J. Hum. Genet. 64, 365–371.PubMedCrossRefGoogle Scholar
  52. Koutnikova H., Campuzano, V., Foury, F., et al. (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat. Genet. 16, 345–51.PubMedCrossRefGoogle Scholar
  53. Krobitsch S. and Lindquist S. (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 97, 1589–1594.PubMedCrossRefGoogle Scholar
  54. Lathrop R. H., Casale M., Tobias D. J., Marsh J. L., and Thompson L. M. (1998) Modeling protein homopolymeric repeats: possible polyglutamine structural motifs for Huntington’s disease. Ismb. 6, 105–114.PubMedGoogle Scholar
  55. Lee M. G. and Nurse P. (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature. 327, 31–35.PubMedCrossRefGoogle Scholar
  56. Lehmann S., Milhavet O., and Mange A. (1999) Trafficking of the cellular isoform of the prion protein. Biomed. Pharmacother. 53, 39–46.PubMedCrossRefGoogle Scholar
  57. Ligr M., Madeo F., Frohlich E., et al. (1998) Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett. 438, 61–65.PubMedCrossRefGoogle Scholar
  58. Lin S. J., Defossez P. A., and Guarente L. (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128.PubMedCrossRefGoogle Scholar
  59. Lindquist S. (1997) Mad cows meet psi-chotic yeast: the expansion of the prion hypothesis. Cell. 89, 495–498.PubMedCrossRefGoogle Scholar
  60. Ma Y. and Hendershot L. M. (2002) The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress Chaperones. 7, 222–229.PubMedCrossRefGoogle Scholar
  61. Ma J. and Lindquist S. (2002) Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298, 1785–1788.PubMedCrossRefGoogle Scholar
  62. Ma J., Wollmann R., and Lindquist S. (2002) Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298, 1781–1785.PubMedCrossRefGoogle Scholar
  63. Ma Y. and Hendershot L. M. (2001) The unfolding tale of the unfolded protein response. Cell. 107, 827–830.PubMedCrossRefGoogle Scholar
  64. Ma J. and Lindquist S. (2001) Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc. Natl. Acad. Sci. USA 98, 14955–14960.PubMedCrossRefGoogle Scholar
  65. Ma J. and Lindquist S. (1999) De novo generation of a PrPSc-like conformation in living cells. Nat. Cell Biol. 1, 358–361.PubMedCrossRefGoogle Scholar
  66. Madeo F., Engelhardt S., Herker E., et al. (2002a) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr. Genet. 41, 208–216.PubMedCrossRefGoogle Scholar
  67. Madeo F., Herker E., Maldener C., et al. (2002b) A caspase-related protease regulates apoptosis in yeast. Mol. Cell. 9, 911–917.PubMedCrossRefGoogle Scholar
  68. Madeo F., Frohlich E., Ligr M., et al. (1999) Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145, 757–767.PubMedCrossRefGoogle Scholar
  69. Madeo F., Frohlich E., and Frohlich K. U. (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139, 729–734.PubMedCrossRefGoogle Scholar
  70. Mathew A., Shi Y., Jolly C., and Morimoto R. I. (2000) Analysis of the mammalian heat-shock response. Inducible gene expression and heat-shock factor activity. Methods Mol. Biol. 99, 217–55.PubMedGoogle Scholar
  71. McLean P. J., Kawamata H., and Hyman B. T. (2001) Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience. 104, 901–912.PubMedCrossRefGoogle Scholar
  72. McVey M., Kaeberlein M., Tissenbaum H. A., and Guarente L. (2001) The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics. 157, 1531–1542.PubMedGoogle Scholar
  73. Meriin A. B., Zhang X., Miliaras N. B., et al. (2003) Aggregation of a polypeptide with expanded polyglutamine domain in yeast cells leads to defects in endocytosis, submitted for publication.Google Scholar
  74. Meriin A. B., Zhang X., He, X., et al. (2002) Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157, 997–1004.PubMedCrossRefGoogle Scholar
  75. Metzler M., Legendre-Guillemin V., Gan L., et al. (2001) HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J. Biol. Chem.. 276, 39271–39276.PubMedCrossRefGoogle Scholar
  76. Michelitsch M. D. and Weissman J. S. (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA 97, 11910–11915.PubMedCrossRefGoogle Scholar
  77. Muchowski P. J. (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron. 35, 9–12.PubMedCrossRefGoogle Scholar
  78. Muchowski P.J., Ning K., D’Souza-Schorey C., and Fields S. (2002) Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc. Natl. Acad. Sci. USA 99, 727–732.PubMedCrossRefGoogle Scholar
  79. Muchowski P. J., Schaffar G., Sittler A., et al. (2000) Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 97, 7841–7846.PubMedCrossRefGoogle Scholar
  80. Nucifora F. C. Jr., Sasaki M., Peters M. F., et al. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428.PubMedCrossRefGoogle Scholar
  81. Pardo, C.A., Rabin B. A., Palmer D. N., and Price D. L. (1994) Accumulation of the adenosine triphosphate synthase subunit C in the mnd mutant mouse. A model for neuronal ceroid lipofuscinosis. Am. J. Pathol. 144, 829–835.PubMedGoogle Scholar
  82. Pearce D. A., Carr C. J., Das B., and Sherman F. (1999a) Phenotypic reversal of the btn1 defects in yeast by chloroquine: a yeast model for Batten disease. Proc. Natl. Acad. Sci. USA 96, 11341–11345.PubMedCrossRefGoogle Scholar
  83. Pearce D. A., Ferea T., Nosel S. A., Das B., and Sherman F. (1999b) Action of BTN1, the yeast orthologue of the gene mutated in Batten disease. Nat. Genet. 22, 55–58.PubMedCrossRefGoogle Scholar
  84. Pearce D. A., Nosel S. A., and Sherman F. (1999c) Studies of pH regulation by Btn1p, the yeast homolog of human Cln3p. Mol. Genet. Metab. 66, 320–323.PubMedCrossRefGoogle Scholar
  85. Pearce D. A. and Sherman F. (1999) Investigation of Batten disease with the yeast Saccharomyces cerevisiae. Mol. Genet. Metab. 66, 314–319.PubMedCrossRefGoogle Scholar
  86. Pearce D. A. and Sherman F. (1998) A yeast model for the study of Batten disease. Proc. Natl. Acad. Sci. USA 95, 6915–6918.PubMedCrossRefGoogle Scholar
  87. Pearce D. A. and Sherman F. (1997) BTN1, a yeast gene corresponding to the human gene responsible for Batten’s disease, is not essential for viability, mitochondrial function, or degradation of mitochondrial ATP synthase. Yeast 13, 691–697.PubMedCrossRefGoogle Scholar
  88. Pirkkala L., Nykanen P., and Sistonen L. (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118–1131.PubMedCrossRefGoogle Scholar
  89. Puccio H. and Koenig M. (2000) Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum. Mol. Genet. 9, 887–892.PubMedCrossRefGoogle Scholar
  90. Rao D. S., Chang J. C., Kumar P. D., et al. (2001) Huntingtin interacting protein 1 Is a clathrin coat binding protein required for differentiation of late spermatogenic progenitors. Mol. Cell Biol. 21, 7796–7806.PubMedCrossRefGoogle Scholar
  91. Richard G. F., Goellner G. M., McMurray C. T., and Haber J. E. (2000) Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J. 19, 2381–2390.PubMedCrossRefGoogle Scholar
  92. Richard G. F., Dujon B., and Haber J. E. (1999) Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol. Gen. Genet. 261, 871–882.PubMedCrossRefGoogle Scholar
  93. Schulz J. B., Lindenau J., Seyfried J., and Dichgans J. (2000) Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem. 267, 4904–4911.PubMedCrossRefGoogle Scholar
  94. Schwartz A. L. and Ciechanover A. (1999) The ubiquitin-proteasome pathway and pathogenesis of human diseases. (review). Annu. Rev. Med. 50, 57–74.PubMedCrossRefGoogle Scholar
  95. Schweitzer J. K. and Livingston D. M. (1998) Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum. Mol. Genet. 7, 69–74.PubMedCrossRefGoogle Scholar
  96. Severin F. F. and Hyman A. A. (2002) Pheromone induces programmed cell death in S. cerevisiae. Curr. Biol. 12, R233-R235.PubMedCrossRefGoogle Scholar
  97. Sherman M. Y. and Goldberg A. L. (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron. 29, 15–32.PubMedCrossRefGoogle Scholar
  98. Singaraja R. R., Hadano S., Metzler M., et al. (2002) HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum. Mol. Genet. 11, 2815–2828.PubMedCrossRefGoogle Scholar
  99. Sittler A., Walter, S., Wedemeyer, N., et al. (1998) SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol Cell. 2, 427–436.PubMedCrossRefGoogle Scholar
  100. Sondheimer N., Lopez N., Craig E. A., and Lindquist S. (2001) The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J. 20, 2435–2442.PubMedCrossRefGoogle Scholar
  101. Sondheimer N. and Lindquist S. (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell. 5, 163–172.PubMedCrossRefGoogle Scholar
  102. Steffan J. S., Kazantsev A., Spasic-Boskovic O., et al. (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 97, 6763–6768.PubMedCrossRefGoogle Scholar
  103. Steinmetz L. M., Scharfe C., Deutschbauer A. M., et al. (2002) Systematic screen for human disease genes in yeast. Nat. Genet. 31, 400–404.PubMedGoogle Scholar
  104. Takekawa M., Maeda T., and Saito, H. (1998) Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J. 17, 4744–4752.PubMedCrossRefGoogle Scholar
  105. Telenius H., Kremer B., Goldberg Y. P., et al. (1994) Somatic and gonadal mosaicism of the Huntington disease gene Cag repeat in brain and sperm. Nat. Genet. 6, 409–414.PubMedCrossRefGoogle Scholar
  106. Tissenbaum H. A. and Guarente L. (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 410, 227–230.PubMedCrossRefGoogle Scholar
  107. Velier J., Kim M., Schwarz C., et al. (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp. Neurol. 152, 34–40.PubMedCrossRefGoogle Scholar
  108. Vidair C. A., Huang R. N., and Doxsey S. J. (1999) Heat shock causes protein aggregation and reduced protein solubility at the centrosome and other cytoplasmic locations. Int. J. Hyperthermia. 12, 681–695.Google Scholar
  109. Wickner R. B., Taylor K. L., Edskes H. K., et al. (2001) Yeast prions act as genes composed of self-propagating protein amyloids. Adv. Protein Chem. 57, 313–334.PubMedCrossRefGoogle Scholar
  110. Wigley W. C., Fabunmi R. P., Lee M. G., et al. (1999) Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 145, 481–490.PubMedCrossRefGoogle Scholar
  111. Wilson R. B. and Roof D. M. (1997) Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat. Genet. 16, 352–357.PubMedCrossRefGoogle Scholar
  112. Winzeler E. A., Shoemaker D. D., Astromoff A., et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.PubMedCrossRefGoogle Scholar
  113. Wojcik C., Schroeter D., Wilk S., Lamprecht J., and Paweletz N. (1996) Ubiquitin-mediated proteolysis centers in HeLa cells—indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur. J. Cell Biol. 71, 311–318.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 2003

Authors and Affiliations

  1. 1.Department of BiochemistryBoston University School of MedicineBoston
  2. 2.Department of PharmacologyUniversity of WashingtonSeattle

Personalised recommendations