NeuroMolecular Medicine

, Volume 1, Issue 1, pp 55–67 | Cite as

Numb modifies neuronal vulnerability to amyloid β-peptide in an isoform-specific manner by a mechanism involving altered calcium homeostasis

Implications for neuronal death in Alzheimer’s disease
  • Sic L. Chan
  • Ward A. Pedersen
  • Hiayan Zhu
  • Mark P. Mattson
Original Research


Increased production of neurotoxic forms of amyloid β-peptide (Aβ) and abnormalities in neuronal calcium homeostasis play central roles in the pathogenesis of Alzheimer’s disease (AD). Notch, a membrane receptor that controls cell-fate decisions during development of the nervous system, has been linked to AD because it is a substrate for the γ-secretase enzyme activity that involves the presenilin-1 (PS1) protein in which mutations cause early-onset inherited AD. The actions of Notch can be antagonized by Numb, an evolutionarily conserved protein that exists in four isoforms that differ in two functional domains: a phosphotyrosine-binding (PTB) domain and a proline-rich region (PRR). We now report that Numb isoforms containing a short PTB domain increase the vulnerability of PC12 cells to death induced by Aβ1-42 and by 4-hydroxynonenal, a lipid peroxidation product previously shown to mediate neurotoxic effects of Aβ. Dysregulation of cellular calcium homeostasis occurs in cells expressing Numb isoforms with a short PTB domain, and the death-promoting effect of Numb is abolished by pharmacological inhibition of calcium release. The levels of Numb are increased in cultured primary hippocampal neurons exposed to Aβ, suggesting a role for endogenous Numb in the neuronal death process. Furthermore, higher levels of Numb were detected in the cortex of mice expressing mutant amyloid precursor protein (APP) relative to age-matched wild-type mice. Our data identify a novel isoform-specific effect of Numb on neuronal life and death cell fate decisions potentially relevant to the pathogenesis of AD. Our findings also suggest that the effects of Numb on cell fate decisions, both during development of the nervous system and in neurodegenertive disorders, are mediated by changes in cellular calcium homeostasis.

Index Entries

apoptosis calcium learning and memory neurotrophic factor NMDA patch clamp staurosporine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artavanis-Tsakonas S., Rand M. D., and Lake R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284, 770–776.PubMedCrossRefGoogle Scholar
  2. Begley J. G., Duan W., Chan S., Duff K., and Mattson M. P. (1999) Altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments of presenilin-1 mutantmice. J. Neurochem. 72, 1030–1039.PubMedCrossRefGoogle Scholar
  3. Berechid B. E., Thinakaran G., Wong P. C., Sisodia S. S., and Nye J. S. (1999) Lack of requirement for presenilin1 in Notch1 signaling. Curr. Biol. 9, 1493–1496.PubMedCrossRefGoogle Scholar
  4. Borchelt D. R., Thinakaran G., Eckman C. B., Lee M. K., Davenport F., Ratovitsky T., et al. (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ 1–42 / 1–40 ratio in vitro and in vivo. Neuron 17, 1005–1013.PubMedCrossRefGoogle Scholar
  5. Cattaneo E. and Pelicci P. G. (1998) Emerging roles for SH2 / PTB-containing Shc adaptor proteins in the developing mammalian brain. Trends Neurosci. 21, 476–481.PubMedCrossRefGoogle Scholar
  6. Chan S. L., Tammariello S. P., Estus S., and Mattson M. P. (1999) Prostate apoptosis response-4 mediates trophic factor withdrawal induced apoptosis of hippocampal neurons: actions prior to mitochondrial dysfunction and caspase activation. J. Neurochem. 73, 502–512.PubMedCrossRefGoogle Scholar
  7. Chan S. L., Mayne M., Holden C. P., Geiger J. D., and Mattson M. P. (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J. Biol. Chem. 275, 18,195–18,200.Google Scholar
  8. Conlon R. A., Reaume A. G., and Rossant J. (1995) Notch1 is required for the coordinate segmentation of somites. Development 121, 1533–1545.PubMedGoogle Scholar
  9. Dho S. E., French M. B., Woods S. A., and McGlade C. J. (1999) Characterization of four mammalian numb protein isoforms. Identification of cytoplasmic and membrane-associated variants of the phosphotyrosine binding domain. J. Biol. Chem. 274, 33,097–33,104.CrossRefGoogle Scholar
  10. Fortini M. E. (2001) Notch and presenilin: a proteolytic mechanism emerges. Curr. Opin. Cell Biol. 13, 627–634.PubMedCrossRefGoogle Scholar
  11. Frise E., Knoblich J. A., Younger-Shepherd S., Jan L. Y., and Jan Y. N. (1996) The Drosophila Numb protein inhibits signaling of the Notch receptor during cell-cell interaction in sensory organ lineage. Proc. Natl. Acad. Sci. USA 93, 11,925–11,932.CrossRefGoogle Scholar
  12. Guo M., Jan L. Y., and Jan Y. N. (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17, 27–41.PubMedCrossRefGoogle Scholar
  13. Guo Q., Sopher B. L., Furukawa K., Pham D. G., Robinson N., Martin G. M., and Mattson M. P. (1997) Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J. Neurosci. 17, 4212–4222.PubMedGoogle Scholar
  14. Guo Q., Christakos S., Robinson N., and Mattson M. P. (1998a) Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondrial function. Proc. Natl. Acad. Sci. USA 95, 3227–3232.PubMedCrossRefGoogle Scholar
  15. Guo Q., Fu W., Xie J., Luo H., Sells S. F., Geddes J. W., et al. (1998b) Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat. Med. 4, 957–962.PubMedCrossRefGoogle Scholar
  16. Guo Q., Sebastian L., Sopher B. L., Miller M. W., Ware C. B., Martin G. M., and Mattson M. P. (1999a) Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation. J. Neurochem. 72, 1019–1029.PubMedCrossRefGoogle Scholar
  17. Guo Y., Livne-Bar I., Zhou L., and Boulianne G. L. (1999b) Drosophila presenilin is required for neuronal differentiation and affects notch subcellular localization and signaling. J. Neurosci. 19, 8435–8442.PubMedGoogle Scholar
  18. Guo Q., Sebastian L., Sopher B. L., Miller M. W., Glazner G. W., Ware C. B., et al. (1999c) Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc. Natl. Acad. Sci. USA 96, 4125–4130.PubMedCrossRefGoogle Scholar
  19. Handler M., Yang X., and Shen J. (2000) Presenilin-1 regulates neuronal differentiation during neurogenesis. Development 127, 2593–2606.PubMedGoogle Scholar
  20. Hardy J. (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci. 20, 154–159.PubMedCrossRefGoogle Scholar
  21. Jeffries S. and Capobianco A. J. (2000) Neoplastic transformation by Notch requires nuclear localization. Mol. Cell. Biol. 20, 3928–3941.PubMedCrossRefGoogle Scholar
  22. Jehn B. M., Bielke W., Pear W. S., and Osborne B. A. (1999) Protective effects of notch-1 on TCR-induced apoptosis. J. Immunol. 162, 635–638.PubMedGoogle Scholar
  23. Keller J. N., Mark R. J., Bruce A. J., Blanc E., Rothstein J. D., Uchida K., et al. (1997) 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80, 685–696.PubMedCrossRefGoogle Scholar
  24. Kruman I., Bruce-Keller A. J., Bredesen D., Waeg G., and Mattson M. P. (1997) Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J. Neurosci. 17, 5089–5100.PubMedGoogle Scholar
  25. Kulic L., Walter J., Multhaup G., Teplow D. B., Baumeister R., Romig H., et al. (2000) Separation of presenilin function in amyloid beta-peptide generation and endoproteolysis of Notch. Proc. Natl. Acad. Sci. USA 97, 5913–5918.PubMedCrossRefGoogle Scholar
  26. Leissring M. A., Akbari Y., Fanger C. M., Cahalan M. D., Mattson M. P., and LaFerla F. M. (2000) Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J. Cell Biol. 149, 793–798.PubMedCrossRefGoogle Scholar
  27. Margolis B., Borg J. P., Straight S., and Meyer D. (1999) The function of PTB domain proteins. Kidney Int. 56, 1230–1237.PubMedCrossRefGoogle Scholar
  28. Mark R. J., Hensley K., Butterfield D. A., and Mattson M. P. (1995) Amyloid beta-peptide impairs ion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15, 6239–6249.PubMedGoogle Scholar
  29. Mark R. J., Pang Z., Geddes J. W., Uchida K., and Mattson M. P. (1997) Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.PubMedGoogle Scholar
  30. Mattson M. P. (1990) Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 4, 105–117.PubMedCrossRefGoogle Scholar
  31. Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., and Rydel R. E. (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12, 376–389.PubMedGoogle Scholar
  32. Mattson M. P., Tomaselli K. J., and Rydel R. E. (1993a) Calcium-destabilizing and neurodegenerative effects of aggregated beta-amyloid peptide are attenuated by basic FGF. Brain Res. 621, 35–49.PubMedCrossRefGoogle Scholar
  33. Mattson M. P., Kumar K. N., Wang H., Cheng B., and Michaelis E. K. (1993b) Basic FGF regulates the expression of a functional 71 kDa NMDA receptor protein that mediates calcium influx and neurotoxicity in hippocampal neurons. J. Neurosci. 13, 4575–4588.PubMedGoogle Scholar
  34. Mattson M. P., Fu W., Waeg G., and Uchida K. (1997a) 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport 8, 2275–2281.PubMedCrossRefGoogle Scholar
  35. Mattson M. P., Goodman Y., Luo H., Fu W., and Furukawa K. (1997b) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J. Neurosci. Res. 49, 681–697.PubMedCrossRefGoogle Scholar
  36. Mattson M. P. (2000) Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1, 120–129.PubMedCrossRefGoogle Scholar
  37. Mattson M. P., LaFerla F. M., Chan S. L., Leissring M. A., Shepel P. N., and Geiger J. D. (2000) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 23, 222–229.PubMedCrossRefGoogle Scholar
  38. Mattson M. P., Chan S. L., and Camandola S. (2001) Presenilin mutations and calcium signaling defects in the nervous and immune systems. Bioessays 23, 733–744.PubMedCrossRefGoogle Scholar
  39. Miele L. and Osborne B. (1999) Arbiter of differentiation and death: Notch signaling meets apoptosis. J. Cell Physiol. 181, 393–409.PubMedCrossRefGoogle Scholar
  40. Pedersen W. A., Chan S. L., Zhu H., Verdi J., and Mattson M. P. (2001) Numb facilitates neurotrophic factor-induced differentiation and cell survival dependency in an isoform-specific and calcium-dependent manner. submitted.Google Scholar
  41. Shelly L. L., Fuchs C., and Miele L. (1999) Notch-1 inhibits apoptosis in murine erythroleukemia cells and is necessary for differentiation induced by hybrid polar compounds. J. Cell Biochem. 73, 164–175.PubMedCrossRefGoogle Scholar
  42. Shen J., Bronson R. T., Chen D. F., Xia W., Selkoe D. J., and Tonegawa S. (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89, 629–639.PubMedCrossRefGoogle Scholar
  43. Silos-Santiago I., Greenlund L. J., Johnson E. M. Jr., and Snider W. D. (1995) Molecular genetics of neuronal survival. Curr. Opin. Neurobiol. 5, 42–49.PubMedCrossRefGoogle Scholar
  44. Song W., Nadeau P., Yuan M., Yang X., Shen J., and Yankner B. A. (1999) Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc. Natl. Acad. Sci. USA 96, 6959–6963.PubMedCrossRefGoogle Scholar
  45. Struhl G. and Greenwald I. (1999) Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525.PubMedCrossRefGoogle Scholar
  46. van der Geer P. and Pawson T. (1995) The PTB domain: a new protein module implicated in signal transduction. Trends Biochem. Sci. 20, 277–280.PubMedCrossRefGoogle Scholar
  47. Verdi J. M., Schmandt R., Bashirullah A., Jacob S., Salvino R., Craig C. G., et al. (1996) Mammalian NUMB is an evolutionarily conserved signaling adapter protein that specifies cell fate. Curr. Biol. 6, 1134–1145.PubMedCrossRefGoogle Scholar
  48. Verdi J. M., Bashirullah A., Goldhawk D. E., Kubu C. J., Jamali M., Meakin S. O., and Lipshitz H. D. (1999) Distinct human NUMB isoforms regulate differentiation vs. proliferation in the neuronal lineage. Proc. Natl. Acad. Sci. USA 96, 10,472–10,476.CrossRefGoogle Scholar
  49. Yaich L., Ooi J., Park M., Borg J. P., Landry C., Bodmer R., and Margolis B. (1998) Functional analysis of the Numb phosphotyrosine-binding domain using site-directed mutagenesis. J. Biol. Chem. 273, 10,381–10,388.CrossRefGoogle Scholar
  50. Yankner B. A. (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16, 921–932.PubMedCrossRefGoogle Scholar
  51. Yoshimura R., Araki E., Ura S., Todaka M., Tsuruzoe K., Furukawa N., et al. (1997) Impact of natural IRS-1 mutations on insulin signals: mutations of IRS-1 in the PTB domain and near SH2 protein binding sites result in impaired function at different steps of IRS-1 signaling. Diabetes 46, 929–936.PubMedCrossRefGoogle Scholar
  52. Zhong W., Feder J. N., Jiang M. M., Jan L. Y., and Jan Y. N. (1996) Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53.PubMedCrossRefGoogle Scholar
  53. Zhong W., Jiang M. M., Weinmaster G., Jan L. Y., and Jan Y. N. (1997) Differential expression of mammalian Numb, Numblike and Notch1 suggests distinct roles during mouse cortical neurogenesis. Development 124, 1887–1897.PubMedGoogle Scholar
  54. Zhong W., Jiang M. M., Schonemann M. D., Meneses J. J., Pedersen R. A., Jan L. Y., and Jan Y. N. (2000) Mouse numb is an essential gene involved in cortical neurogenesis. Proc. Natl. Acad. Sci. USA 97,6844–6849.PubMedCrossRefGoogle Scholar
  55. Zilian O., Saner C., Hagedorn L., Lee H. Y., Sauberli E., Suter U., et al. (2001) Multiple roles of mouse Numb in tuning developmental cell fates. Curr. Biol. 11, 494–501.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2002

Authors and Affiliations

  • Sic L. Chan
    • 1
  • Ward A. Pedersen
    • 1
  • Hiayan Zhu
    • 2
  • Mark P. Mattson
    • 1
    • 3
  1. 1.Laboratory of NeurosciencesNational Institute on Aging Gerontology Research CenterBaltimore
  2. 2.Sanders-Brown Research Center on AgingUniversity of KentuckyLexington
  3. 3.Department of NeuroscienceJohns Hopkins University School of MedicineBaltimore

Personalised recommendations