Skip to main content
Log in

Calcium channelopathies

  • Review Article
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Intracellular calcium ([Ca2+] i ) is highly regulated in eukaryotic cells. The free [Ca2+] i is approximately four orders of magnitude less than that in the extracellular environment. It is, therefore, an electrochemical gradient favoring Ca2+ entry, and transient cellular activation increasing Ca2+ permeability will lead to a transient increase in [Ca2+] i . These transient rises of [Ca2+] i trigger or regulate diverse intracellular events, including metabolic processes, muscle contraction, secretion of hormones and neurotransmitters, cell differentiation, and gene expression. Hence, changes in [Ca2+] i act as a second messenger system coordinating modifications in the external environment with intracellular processes. Notably, information on the molecular genetics of the membrane channels responsible for the influx of Ca2+ ions has led to the discovery that mutations in these proteins are linked to human disease. Ca2+ channel dysfunction is now known to be the basis for several neurological and muscle disorders such as migraine, ataxia, and peri odic paralysis. In contrast to other types of genetic diseases, Ca2+ channelopathies can be studied with precision by electrophysiological methods, and in some cases, the results have been highly rewarding with a biophysical phenotype that correlates with the ultimate clinical phenotype. This review outlines recent advances in genetic, molecular, and pathophysiological aspects of human Ca2+ channelopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams B. A., and Beam K G. (1990) Muscular dys genesis in mice: a model system for studying excitation-contraction coupling. FASEB J. 4, 2809–2816.

    PubMed  CAS  Google Scholar 

  • Arikkath J., and Campbell K. P. (2003) Auxiliary subunits: essential components of the voltage-gated calcium channel complex. Curr. Opin. Neurobiol. 13, 298–307.

    Article  PubMed  CAS  Google Scholar 

  • Bain P. G., O'Brien M. D., Keevil F., and Porter D. A. (1992) Familial periodic cerebellar ataxia: a problem of cerebellar intracellular pH homeostasis. Ann. Neurol. 31, 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Ball S. L., and Gregg R. G. (2002) Using mutant mice to study the role of voltage-gated calcium channels in the retina. Adv. Exp. Med. Biol. 514, 439–450.

    PubMed  CAS  Google Scholar 

  • Ball S. L., Powers P. A., Shin H. S., Morgans C. W., Peachey N. S., and Gregg R. G. (2002) Role of the β2 subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest. Ophthalmol. Vis. Sci. 43, 1595–1603.

    PubMed  Google Scholar 

  • Baloh R. W. and Jen J. C. (2002) Genetics of familial episodic vertigo and ataxia. Ann. NY Acad. Sci. 956, 338–345.

    Article  PubMed  CAS  Google Scholar 

  • Bech-Hansen N. T., Boycott K. M., Gratton K. J., Ross D. A., Field L. L., and Pearce W. G. (1998a) Local ization of a gene for incomplete X-linked congenital stationary night blindness to the interval between DXS6849 and DXS8023 in Xp11.23. Hum. Genet. 103, 124–130.

    Article  PubMed  CAS  Google Scholar 

  • Bech-Hansen N. T., Naylor M. J., Maybaum T. A., et al. (1998b) Loss-of-function mutations in a calcium-channel α1 subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat. Genet. 19, 264–267.

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer L., Campbell K. P., Catterall W. A., et al. (1994) The naming of voltage-gated calcium channels. Neuron 13, 505, 506.

    Article  PubMed  CAS  Google Scholar 

  • Black J. L. 3rd. (2003) The voltage-gated calcium channel γ subunits: a review of the literature. J. Bioenerg. Biomembr. 35, 649–660.

    Article  PubMed  CAS  Google Scholar 

  • Boycott K. M., Maybaum T. A., Naylor M. J., et al. (2001) Asummary of 20 CACNA1F mutations identified in 36 families with incomplete X-linked congenital stationary night blindness, and characterization of splice variants. Hum. Genet. 108, 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Brooks C., Robinson R. L., Halsall P. J., and Hopkins P. M. (2002) No evidence of mutations in the CACNA1S gene in the UK malignant hyperthermia population. Br. J. Anaesth. 88, 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Catterall W. A. (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555.

    Article  PubMed  CAS  Google Scholar 

  • Catterall W.A., Perez-Reyes E., Snutch T. P., and Striessnig J. (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol. Rev. 57, 411–425.

    Article  PubMed  CAS  Google Scholar 

  • Chartrand D. (2003) Rapid intervention for an episode of malignant hyperthermia. Can. J. Anaesth 50, 104–107.

    Article  PubMed  Google Scholar 

  • Chen X. H., Bezprozvanny I., and Tsien R. W. (1996) Molecular basis of proton block of L-type Ca2+ channels. J. Gen. Physiol. 108, 363–374.

    Article  PubMed  CAS  Google Scholar 

  • Christopher A. R. (1997) Intranuclear neuronal inclusions: a common pathogenic mechanism for glutamine-repeat neurodegenerative diseases? Neuron 19, 1147–1150.

    Article  Google Scholar 

  • Davies N. P. and Hanna M. G. (2001) The skeletal muscle channelopathies: basic science, clinical genetics and treatment. Curr. Opin. Neurol. 14, 539–351.

    Article  PubMed  CAS  Google Scholar 

  • Dirksen R. T. (2002) Bi-directional coupling between dihydropyridine receptors and ryanodine receptors. Front. Biosci. 7, d659-d670.

    Article  PubMed  CAS  Google Scholar 

  • Doering C. J. and Zamponi G. W. (2003) Molecular pharmacology of high voltage-activated calcium channels. J. Bioenerg Biomembr. 35, 491–505.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin A. C. (2003) β subunits of voltage-gated calcium channels. J. Bioenerg. Biomembr. 35, 599–620.

    Article  PubMed  CAS  Google Scholar 

  • Ertel E. A., Campbell K. P., Harpold M. M., et al. (2000) Nomenclature of voltage-gated calcium channels. Neuron 25, 533–535.

    Article  PubMed  CAS  Google Scholar 

  • Felix R. (1999) Voltage-dependent Ca2+ channel α2δ auxieiary subunit: structure, function and regulation. Receptor Channel 6, 351–362.

    CAS  Google Scholar 

  • Felix R. (2000) Channelopathies: ion channel defects linked to heritable clinical disorders. J. Med. Genet. 57, 729–740.

    Article  Google Scholar 

  • Felix, R. (2002) In sights from mouse models of absence epilepsy into Ca2+ channel physiology and disease efiology. Cell Mol. Neurobiol. 22, 103–120.

    Article  PubMed  CAS  Google Scholar 

  • Fontame B., Vale-Santos J., Jurkat-Rott K., et al. (1994) Mapping of the hypokalaemic periodic paralysis (HypoPP) locus to chromosome 1q31–32 in three European families. Nat. Genet. 6, 267–272.

    Article  Google Scholar 

  • Friend K. L., Crimmins D., Phan T. G., et al. (1999) Detection of a novel missense mutation and second recurrent mutation in the CACNA1A gene in individuals with EA-2 and FHM. Hum. Genet. 105, 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Geschwind D. H., Perlman S., Figueroa C. P., Treiman L. J., and Pulst S. M. (1997) The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am. J. Hum. Genet. 60, 842–850.

    PubMed  CAS  Google Scholar 

  • Grafe P., Quasthoff S., Strupp M., and Lehmann-Horn F. (1990) Enhancement of K+ conductance improves in vitro the contraction force of skeletal muscle in hypokalemic, periodic paralysis. Muscle Nerve 13, 451–457.

    Article  PubMed  CAS  Google Scholar 

  • Griggs R. C., Moxley R. T. 3rd., Lafrance R. A., and McQuillen J. (1978) Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 28, 1259–1264.

    PubMed  CAS  Google Scholar 

  • Guida S., Trettel F., Pagnutti S., et al. (2001) Complete loss of P/Q calcium channel activity caused by a CACNA1A missense mutation carried by patients with episodic ataxia type 2. Am. J. Hum. Genet. 68, 759–764.

    Article  PubMed  CAS  Google Scholar 

  • Hille B. (2001) Ion channels of excitable membranes. 3rd ed., Sinauer Associates Inc. Sunderland, MA.

    Google Scholar 

  • Iles D. E., Lehmann-Horn F., Scherer S. W., et al (1994). Localization of the gene encoding the α2/δ-subunits of the L-type voltage-dependent calcium channel to chromosome 7q and analysis of the segregation of flanking markers in malignant hyperthermia sus ceptible families. Hum. Mol. Genet. 3, 969–975.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K., Fujigasaki H., Saegusa H., et al. (1999) Abundant expression and cytoplasmic aggregations of α1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum. Mol. Genet. 8, 1185–1193.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K., Tanaka H., Saito M., et al. (1997) Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1–p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am. J. Hum. Genet. 61, 336–346.

    Article  PubMed  CAS  Google Scholar 

  • Jacobi F. K., Hamel C. P., Arnaud B., et al. (2003) A novel CACNA1F mutation in a french family with the incomplete type of X-linked congenital stationary night blindness. Am. J. Ophthalmol. 135, 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Jen J., Wan J., Graves M., et al. (2001) Loss-of-function EA2 mutations are associated with impaired neuromuscular transmission. Neurology 57, 1843–1848.

    PubMed  CAS  Google Scholar 

  • Jen J., Yue Q., Nelson S. F., et al. (1999) A novel nonsense mutation in CACNA1A causes episodic ataxia and hemiplegia. Neurology 53, 34–37.

    PubMed  CAS  Google Scholar 

  • Jodice C., Mantuano E., Veneziano L., et al. (1997) Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19P. Hum. Mol. Genet. 6, 1973–1978.

    Article  PubMed  CAS  Google Scholar 

  • Jun K., Piedras-Renteria E. S., Smith S. M., et al. (1999) Ablation of P/Q-type Ca2+ channel currents altered synaptic transmission, and progressive ataxia in mice lacking the α1-subunit. Proc. Natl. Acad. Sci. USA 96, 15,245–15,250.

    Article  CAS  Google Scholar 

  • Jurkat-Rott K., Lerche H., and Lehmann-Horn F. (2002) Skeletal muscle channelopathies. J. Neurol. 249, 1493–1502.

    Article  PubMed  CAS  Google Scholar 

  • Kaja S., van de Ven R. C., Broos L. A., et al. (2005) Gene dosage-dependent transmitter release changes at neuromuscular synapses of CACNA1A R192Q knockin mice are non-progressive and do not lead to morphological changes or muscle weakness. Neuroscience 135, 81–95.

    Article  PubMed  CAS  Google Scholar 

  • Kang M. G., Chen C. C., Felix R., et al. (2001) Biochemical and biophysical evidence for β2 subunit association with neuronal voltage-activated Ca2+ channels. J. Biol. Chem. 276, 32,917–32,924.

    CAS  Google Scholar 

  • Kang M. G. and Campbell K. P. (2003) Gamma subunit of voltage-activated calcium channels. J. Biol. Chem. 278, 21,315–21,318.

    CAS  Google Scholar 

  • Klugbauer N., Marais E., and Hofmann F. (2003) Calcium channel α2δ subunis: Differential expression, function, and drug binding. J. Bioenerg. Biomembr. 35, 639–647.

    Article  PubMed  CAS  Google Scholar 

  • Kraus R.L., Sinnegger M. J., Glossmann H., Hering S., and Striessnig J. (1998) Familial hemiplegic migraine mutations change α1A Ca2+ channel kinetics. J. Biol. Chem. 273, 5586–5590.

    Article  PubMed  CAS  Google Scholar 

  • Lacinovia L. (2005) Voltage-dependent calcium channels. Gen. Physiol. Biophys. 24(Suppl 1), 1–78.

    Google Scholar 

  • Lupie P., Goudet C., Nargeot J., Fontaine B., and Lory P. (1996) Electrophysiological properties of the hypokalaemic periodic paralysis mutation (R528H) of the skeletal muscle α1S subunit as expressed in mouse L cells. FEBS Lett. 382, 244–248.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzon N. M. and Beam K. G. (2000) Calcium channelopathies. Kidney Int. 57, 794–802.

    Article  PubMed  CAS  Google Scholar 

  • MacLennan D. H., Phillips M. S., and Zhang Y. (1996) The genetic and physiological basis of malignant hyperthermia. in Molecular Biology of Membrane Transport Disorders, 2nd ed., Schultz S. G., Andreoli T. E., Brown A. M., Fambrough D. M., Hoffman J. F., and Welsh M. J., eds., Plenum Press, New York.

    Google Scholar 

  • Maselli R. A., Books W., and Dunne V. (2003) Effect of inherited abnormalities of calcium regulation on human neuromuscular transmission. Ann. NY Acad. Sci. 998, 18–28.

    Article  PubMed  CAS  Google Scholar 

  • Matsuyama Z., Wakamori M., Mori Y., Kawakami H., Nakamura S., and Imoto K. (1999) Direct alteration of the P/Q-type Ca2+ channel property by polygfutamine expansion in spinocerebellar ataxia 6. J. Neurosci. 19, RC14:1–5.

    Google Scholar 

  • Matsuyama Z., Kawakami H., Maruyama H., et al. (1997) Molecular features of the CAG repeats of spinocerebellar ataxia 6 (SCA6). Hum. Mol. Genet. 6, 1283–1287.

    Article  PubMed  CAS  Google Scholar 

  • Monnier N., Procaccio V., Stieglitz P., and Lunardi J. (1997) Malignant-hyperthermia susceptibility is associated with a mutation of the α1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am. J. Hum. Genet. 60, 1316–1325.

    Article  PubMed  CAS  Google Scholar 

  • Monnier N., Krivosic-Horber R., Payen J. F., et al. (2002) Presence of two different genetic traits in malignanthyperthermia families: implication for genetic analysis, diagnosis, and incidence of malignant hyperthermia susceptibility. Anethestiology 97, 1067–1074.

    Article  CAS  Google Scholar 

  • Monnier N., Romero N. B., Lerale J., et al. (2000) An autosomal dominant congenital myopathy with cores and rods is associated with a neomutation in the RYR1 gene encoding the skeletal muscle ryanodine receptor. Hum. Mol. Genet. 9, 2599–2608.

    Article  PubMed  CAS  Google Scholar 

  • Morgans C. W., Gaughwin P., and Maleszka R. (2001) Expression of the α1F calcium channel subunit by photoreceptors in the rat retina. Mol. Vis. 7, 202–209.

    PubMed  CAS  Google Scholar 

  • Morrill J. A. and Cannon S. C. (1999) Effects of mutations causing hypokalaemic periodic paralysis on the skeletal muscle L-type Ca2+ channel, expressed in Xenopus laevis oocytes. J. Physiol. (Lond.) 520(Part 2), 321–336.

    Article  CAS  Google Scholar 

  • Morrill J. A., Brown R. H. Jr., and Cannon S. C. (1998) Gating of the L-type Ca channel in human skeletal myotubes: an activation defect caused by the hypokalemic periodic paralysis mutation R528H. J. Neurosci. 18, 10,320–10,334.

    CAS  Google Scholar 

  • Nechiporuk T., Huynh D. P., Figueroa K., Sahba S., Nechiporuk A., and Pulst S. M. (1998) The mouse SCA2 gene: cDNA sequence, alternative splicing and protein expression. Hum Mol. Genet. 7, 1301–1309.

    Article  PubMed  CAS  Google Scholar 

  • Ng T. M., Kohli A., Fagan S. C. Mohamed A. E., and Geiszt G. (2000) The effect of intravenous verapamil on cerebral hemodynamics in a migraine patient with hemiplegia. Ann. Pharmacother. 34, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Ophoff R. A., Terwindt G. M., Vergouwe M. N., et al. (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552.

    Article  PubMed  CAS  Google Scholar 

  • Piedras-Renteria E. S., Watase K., Harata N., et al. (2001) Increased expression of α1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6. J. Neurosci. 21, 9185–9193.

    PubMed  CAS  Google Scholar 

  • Pietrobon D. (2005a) Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr. Opin. Neurobiol. 15, 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Pietrobon D. (2005b) Migraine: new molecular mechanisms. Neuroscientist 11, 373–386.

    Article  PubMed  CAS  Google Scholar 

  • Prod'hom B., Pietrobon D., and Hess P. (1987) Direct measurement of proton transfer rates to a group controlling the dihydropyridine-sensitive Ca2+ channel. Nature 329, 243–246.

    Article  PubMed  Google Scholar 

  • Ptacek L. J., Tawil R., Griggs R. C., et al. (1994) Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 77, 863–868.

    Article  PubMed  CAS  Google Scholar 

  • Pulst S. M., Nechiporuk A., Nechiporuk T., et al. (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spincocerebellar ataxia type 2. Nat. Genet. 14, 269–276.

    Article  PubMed  CAS  Google Scholar 

  • Pulst S. M., Santos N., Wang D., et al. (2005) Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset. Brain 128, 2297–2303.

    Article  PubMed  Google Scholar 

  • Restimito, S., Thompson R. M., Eliet J., et al. (2000) The polyglutamine expansion in spinocerebellar ataxia type 6 causes a β-subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus cocytes. J. Neurosci. 20, 6394–6403.

    Google Scholar 

  • Rios E. and Brum G. (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325, 717–720.

    Article  PubMed  CAS  Google Scholar 

  • Robinson R., Hopkins P., Carsana A., et al. (2003) Several interacting genes influence the malignant hyperthermiaphenotype. Hum. Genet. 112, 217, 218.

    PubMed  Google Scholar 

  • Robinson R. L., Monnier N., Wolz W., et al. (1997) A genome wide search for susceptibility loci in three European malignant hyperthermia pedigrees. Hum. Mol. Genet. 6, 953–961.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H., Kojima H., Yabe I., et al. (1998) Neuropathological and molecular studies of spincocerebellar ataxia type 6 (SCA6). Acta Neuropathol. 95, 199–204.

    Article  PubMed  CAS  Google Scholar 

  • Schleithoff L., Mehrke G., Reutlinger B., and Lehmann-Horn F. (1999) Genomic structure and functional expression of a human α2/δ calcium channel subunit gene (CACNA2). Genomics 61, 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Silver K. and Andermann F. (1993) Alternating hemiplegia of childhood: a study of 10 patients and results of flunarizine treatment. Neurology 43, 36–41.

    PubMed  CAS  Google Scholar 

  • Sipos I., Jurkat-Rott K., Harasztosi C., et al. (1995) Skeletal muscle DHP receptor mutations after calcium currents in human hypokalaemic periodic paralysis myotubes. J. Physiol. 483 (Part 2), 299–306.

    PubMed  CAS  Google Scholar 

  • Scancey S. D., Hildebrand M. E., Materek L. A., Bird T. D., and Snutch T. P. (2004) Functional implications of a novel EA2 mutation in the P/Q-type calcium channel. Ann. Neurol. 56, 213–220.

    Article  CAS  Google Scholar 

  • Stewart S. L., Hogan K., Rosenberg H., and Fletcher J. E. (2001) Identification of the Arg1086His mutation in the alpha subunit of the voltage-dependent calcium channel (CACNA1S) in a North American family with malignant hyperthermia. Clin. Genet. 59, 178–184.

    Article  PubMed  CAS  Google Scholar 

  • Striessnig J., Hoda J. C., Koschak A., et al. (2004) L-type Ca2+ channels in Ca2+ channelopathies. Biochem. Biophys. Res. Commun. 322, 1341–1346.

    Article  PubMed  CAS  Google Scholar 

  • Strom T. M., Nyakatura G., Apfelstedt-Sylla, E., et al. (1998) An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary right blindness. Nat. Genet. 19, 260–263.

    Article  PubMed  CAS  Google Scholar 

  • Takano H., Cancel G., Ikeuchi T., et al. (1998) Close associations between prevalences of dominantly inherited spinocerebellar ataxias with CAG repeat expansions and frequencies of large normal CAG alleles in Japanese and Caucasian populations. Am. J. Hum. Genet. 63, 1060–1066.

    Article  PubMed  CAS  Google Scholar 

  • Tawil R., McDermott M. P., Brown R. Jr., et al. (2000) Randomized trials of dichlorphenamide in the periodic paralyses. Working Group on Periodic Paralysis. Ann. Neurol. 47, 46–53.

    Article  PubMed  CAS  Google Scholar 

  • Toru S., Murakoshi T., Ishikawa K., et al. (2000) Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J. Biol. Chem. 275, 10,893–10,898.

    Article  CAS  Google Scholar 

  • Tricarico D., Servidei S., Tonali P., Jurkat-Rott K., and Camerino D. C. (1999) Impairment of skeletal muscle adenosine triphosphate-sensitive K+ chainnels in patients with hypokalemic periodic paralysis. J. Clin. Invest. 103, 675–682.

    Article  PubMed  CAS  Google Scholar 

  • van den Maagdenberg A. M., Kors, E. E., Brunt E. R., et al. (2002) Episodic ataxia type 2. Three novel truncating mutations and one novel missense mutation in the CACNA1A gene. J. Neurol. 249, 1515–1519.

    Article  PubMed  CAS  Google Scholar 

  • van den Maagdenberg A. M., Pietrobon D., Pizzorusso T., et al. (2004) A Cacnala knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41, 701–710.

    Article  PubMed  Google Scholar 

  • Varadi G., Mori Y., Mikala G., and Schwartz A. (1995) Molecular determinants of Ca2+ channel function and drug action. Trends Pharmacol. Sci. 16, 43–49.

    Article  PubMed  CAS  Google Scholar 

  • Walker D. and De Waard M. (1998) Subunit interaction sites in voltage-dependent Ca2+ channel strole in channel function. Trends Neurosci. 21, 148–154.

    Article  PubMed  CAS  Google Scholar 

  • Wappl E., Koschak A., Poteser M., et al. (2002) Functional consequences of P/Q type Ca2+ channel Cav2.1 missense mutations associated with episodic ataxia type 2 and progressive ataxia. J. Biol. Chem. 277, 6960–6966.

    Article  PubMed  CAS  Google Scholar 

  • Weiss R. G., O'Connell K. M., Flucher B. E., Allen P. D., Grabner M., and Dirksen R. T. (2004) Functional analysis of the R1086H malignant hyperthermia mutation in the DHPR reveals an unexpected influence of the III–IV loop on skeletal muscle EC coupling. Am. J. Physiol. Cell Physiol. 287, C1094-C1102.

    Article  PubMed  CAS  Google Scholar 

  • Yu W. and Horowitz S. H. (2003) Treatment of sporadic hemiplegimigraine with calcium-channel blocker verapamil. Neurology 60, 120, 121.

    PubMed  Google Scholar 

  • Zhuchenko O., Bailey J., Bonnen P., et al. (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat. Genet. 15, 62–69.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Felix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felix, R. Calcium channelopathies. Neuromol Med 8, 307–318 (2006). https://doi.org/10.1385/NMM:8:3:307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:8:3:307

Index Entries

Navigation