Skip to main content
Log in

Making yeast tremble

Yeast models as tools to study neurodegenerative disorders

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Genetic experiments in mice, which are indispensable for studying the molecular basis of neurological disorders, have certain limitations that include slow pace and high costs. It is therefore not surprising that in recent years numerous neurological diseases have been modeled in genetically tractable organisms, including Drosophila, Caenorhabditis elegans, and yeast. Yeast models in particular have a special advantage with respect to genome-wide experimental approaches as a result of the completed sequencing of the genome, the availability of a collection of precise deletion mutants of every gene in the genome, and the rapidly evolving databases of yeast protein-protein interactions and gene expression patterns. These large and easily accessible bodies of information, coupled with the ease with which yeast can be manipulated genetically, have led to dissection of novel mechanisms of neurodegenerative disorders. In this review, we discuss how studies in yeast models have already resulted in significant insights into the understanding of neurodegenerative disorders that include prion disease, Parkinson’s disease, polyglutamine expansion disorders, Friedreich’s ataxia, and Batten disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anton L. C., Schubert U., Bacik I., et al. (1999) Intracellular localization of proteasomal degradation of a viral antigen. J. Cell Biol. 146, 113–124.

    PubMed  CAS  Google Scholar 

  • Babcock M., de Silva D., Oaks R., et al. (1997) Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276, 1709–1712.

    Article  PubMed  CAS  Google Scholar 

  • Bailleul P. A., Newnam G. P., Steenbergen J. N., and Chernoff, Y. O. (1999) Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae. Genetics. 153, 81–94.

    PubMed  CAS  Google Scholar 

  • Bates G. P., Mangiarini L, and Davies, S. W. (1998) Transgenic mice in the study of polyglutamine repeat expansion diseases (review). Brain Pathol. 8, 699–714.

    Article  PubMed  CAS  Google Scholar 

  • Bence N. F., Sampat R. M., and Kopito, R. R. (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292, 1552–1555.

    Article  PubMed  CAS  Google Scholar 

  • Beranger F., Mange A., Goud B., and Lehmann, S. (2002) Stimulation of PrP(C) retrograde transport toward the endoplasmic reticulum increases accumulation of PrP(Sc) in prion-infected cells. J. Biol. Chem. 277, 38972–38977.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Rolfsmeier M. L., Dixon M. J., Wagoner K, and Lahue, R. S. (2002) Identification of RTG2 as a modifier gene for CTG*CAG repeat instability in Saccharomyces cerevisiae. Genetics. 162, 579–589.

    PubMed  CAS  Google Scholar 

  • Birrell G. W., Giaever G, Chu A. M., Davis R. W., and Brown, J. M. (2001) A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc. Natl. Acad. Sci. USA 98, 12608–12613.

    Article  PubMed  CAS  Google Scholar 

  • Bradley J. L., Blake J. C., Chamberlain S, et al. (2000) Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia. Hum. Mol. Genet. 9, 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Campuzano V., Montermini L., Molto M. D., et al. (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427.

    Article  PubMed  CAS  Google Scholar 

  • Cavadini P., Gellera C., Patel P. I., and Isaya, G. (2000) Human frataxin maintains mitochondrial iron homeostasis in Saccharomyces cerevisiae. Hum. Mol. Genet. 9:2523–2530.

    Article  PubMed  CAS  Google Scholar 

  • Chan T. F., Carvalho J., Riles L., and Zheng, X. F. (2000) A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl. Acad. Sci. USA 97, 13227–13232.

    Article  PubMed  CAS  Google Scholar 

  • Chernoff Y.O., Uptain S. M., and Lindquist S. L. (2002) Analysis of prion factors in yeast. Methods Enzymol. 351, 499–538.

    PubMed  CAS  Google Scholar 

  • Chernoff Y. O. (2001) Mutation processes at the protein level: is Lamarck back? Mutat. Res. 488, 39–64.

    Article  PubMed  CAS  Google Scholar 

  • Clow A., Greenhalf W., and Chaudhuri, B. (1998) Under respiratory growth conditions, Bcl-x(L) and Bcl-2 are unable to overcome yeast cell death triggered by a mutant Bax protein lacking the membrane anchor. Eur. J. Biochem. 258, 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Conway K. A., Lee S. J., Rochet J. C., et al. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Cooper A. J., Sheu K. F., Burke J. R., et al. (1997) Polyglutamine domains are substrates of tissue transglutaminase: does transglutaminase play a role in expanded CAG/poly-Q neurodegenerative diseases? J. Neurochem. 69, 431–434.

    Article  PubMed  CAS  Google Scholar 

  • DePace A. H., Santoso, A., Hillner P., and Weissman, J. S. (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241–1252.

    Article  PubMed  CAS  Google Scholar 

  • Derkatch I. L., Bradley M. E., Hong J. Y., and Liebman, S. W. (2001) Prions affect the appearance of other prions: the story of [PIN+]. Cell 106, 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Derkatch I. L., Bradley M. E., Zhou P, Chernoff Y. O., and Liebman, S. W. (1997) Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147, 507–519.

    PubMed  CAS  Google Scholar 

  • Eigen, M. (1996) Prionics or the kinetic basis of prion diseases. Biophys. Chem. 63, A1-A18.

    Article  PubMed  CAS  Google Scholar 

  • Fabunmi R. P., Wigley W. C., Thomas P. J., and DeMartino, G. N. (2000) Activity and regulation of the centrosome-associated proteasome. J. Biol. Chem. 275, 409–413.

    Article  PubMed  CAS  Google Scholar 

  • Feldman D. E. and Frydman J. (2000) Protein folding in vivo: the importance of molecular chaperones. Curr. Opin. Struct. Biol. 10, 26–33.

    Article  PubMed  CAS  Google Scholar 

  • Foury F. and Cazzalini O. (1997) Deletion of the yeast homologue of the human gene associated with Friedreich’s ataxia elicits iron accumulation in mitochondria. FEBS Lett. 411, 373–377.

    Article  PubMed  CAS  Google Scholar 

  • Frohlich K. U. and Madeo, F. (2001) Apoptosis in yeast: a new model for aging research. Exp. Gerontol. 37, 27–31.

    Article  PubMed  CAS  Google Scholar 

  • Frydman, J. (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata R, Bebok, Z., Sorscher E. J., and Sztul E. S. (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J. Cell Biol. 146, 1239–1254.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner, R. M. (1993) Genetic analysis of Batten disease. J. Inherit. Metab. Dis. 16, 787–790.

    Article  PubMed  CAS  Google Scholar 

  • Giaever G., Chu A.M., Ni L., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  PubMed  CAS  Google Scholar 

  • Glickman M. H. and Ciechanover A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373–428.

    PubMed  CAS  Google Scholar 

  • Goedert, M. (2001) The significance of tau and alpha-synuclein inclusions in neurodegenerative diseases. Curr. Opin. Genet. Dev. 11, 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Golabek A. A., Kida, E., Walus M., et al. (2000) CLN3 protein regulates lysosomal pH and alters intracellular processing of Alzheimer’s amyloid-beta protein precursor and cathepsin D in human cells. Mol. Genet. Metab. 70, 203–213.

    Article  PubMed  CAS  Google Scholar 

  • Greenhalf W., Stephan C., and Chaudhuri B. (1996) Role of mitochondria and C-terminal membrane anchor of Bcl-2 in Bax induced growth arrest and mortality in Saccharomyces cerevisiae. FEBS Lett. 380, 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Gu Y, Verghese S., Mishra R. S., et al. (2003) Mutant prion protein-mediated aggregation of normal prion protein in the endoplasmic reticulum: implications for prion propagation and neurotoxicity. J. Neurochem. 84, 10–22.

    Article  PubMed  CAS  Google Scholar 

  • Guarente L. (2001) SIR2 and aging—the exception that proves the rule. Trends Genet. 17, 391–392.

    Article  PubMed  CAS  Google Scholar 

  • Guarente L. and Kenyon C. (2000) Genetic pathways that regulate ageing in model organisms. Nature 408, 255–262.

    Article  PubMed  CAS  Google Scholar 

  • Hall N. A., Lake B. D., and Patrick A. D. (1991) Recent biochemical and genetic advances in our understanding of Batten’s disease (ceroid-lipofuscinosis). Dev. Neurosci. 13, 339–344.

    PubMed  CAS  Google Scholar 

  • Haskell R. E., Carr C. J., Pearce D. A., Bennett M. J., and Davidson B. L. (2000) Batten disease: evaluation of CLN3 mutations on protein localization and function. Hum. Mol. Genet. 9, 735–744.

    Article  PubMed  CAS  Google Scholar 

  • Hattula K. and Peranen J. (2000) FIP-2, a coiled-coil protein, links Huntingtin to Rab8 and modulates cellular morphogenesis. Curr. Biol. 10, 1603–1606.

    Article  PubMed  CAS  Google Scholar 

  • Hershko A. and Ciechanover A. (1998) The ubiquitin system (review). Annu. Rev. Biochem. 67, 425–479.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi S., Koide R., Shimohata T., et al. (1998) Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat. Genet. 18, 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Ireland M. J., Reinke S. S., and Livingston D. M. (2000) The impact of lagging strand replication mutations on the stability of CAG repeat tracts in yeast. Genetics 155, 1657–165.

    PubMed  CAS  Google Scholar 

  • Jakupciak J. P. and Wells R. D. (2000) Genetic instabilities of triplet repeat sequences by recombination. IUBMB Life 50, 355–359.

    Article  PubMed  CAS  Google Scholar 

  • James C., Gschmeissner S., Fraser A., and Evan G. I. (1997) CED-4 induces chromatin condensation in Schizosaccharomyces pombe and is inhibited by direct physical association with CED-9. Curr. Biol. 7, 246–252.

    Article  PubMed  CAS  Google Scholar 

  • Johnston J. A., Illing M. E., and Kopito R. R. (2002) Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil. Cytoskeleton 53, 26–38.

    Article  PubMed  CAS  Google Scholar 

  • Johnston J. A., Ward C. L., and Kopito R. R. (1998) Aggresomes: a cellular response to misfolded proteins. J. Cell Biol. 143, 1883–1898.

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M., McVey M., and Guarente L. (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580.

    Article  PubMed  CAS  Google Scholar 

  • Kahlem P., Green H., and Djian P. (1998) Transglutaminase as the agent of neurodegenerative diseases due to polyglutamine expansion. Pathologie Biologie 46, 681–682.

    PubMed  CAS  Google Scholar 

  • Kang J. J., Schaber M. D., Srinivasula S. M., et al. (1999) Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 274, 3189–3198.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman R. J., Scheuner, D., Schroder, M., et al. (2002) The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell Biol. 3, 411–421.

    Article  PubMed  CAS  Google Scholar 

  • Knight S. A., Kim R., Pain D., and Dancis A. (1999) The yeast connection to Friedreich ataxia. Am. J. Hum. Genet. 64, 365–371.

    Article  PubMed  CAS  Google Scholar 

  • Koutnikova H., Campuzano, V., Foury, F., et al. (1997) Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat. Genet. 16, 345–51.

    Article  PubMed  CAS  Google Scholar 

  • Krobitsch S. and Lindquist S. (2000) Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 97, 1589–1594.

    Article  PubMed  CAS  Google Scholar 

  • Lathrop R. H., Casale M., Tobias D. J., Marsh J. L., and Thompson L. M. (1998) Modeling protein homopolymeric repeats: possible polyglutamine structural motifs for Huntington’s disease. Ismb. 6, 105–114.

    PubMed  CAS  Google Scholar 

  • Lee M. G. and Nurse P. (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature. 327, 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann S., Milhavet O., and Mange A. (1999) Trafficking of the cellular isoform of the prion protein. Biomed. Pharmacother. 53, 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Ligr M., Madeo F., Frohlich E., et al. (1998) Mammalian Bax triggers apoptotic changes in yeast. FEBS Lett. 438, 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Lin S. J., Defossez P. A., and Guarente L. (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S. (1997) Mad cows meet psi-chotic yeast: the expansion of the prion hypothesis. Cell. 89, 495–498.

    Article  PubMed  CAS  Google Scholar 

  • Ma Y. and Hendershot L. M. (2002) The mammalian endoplasmic reticulum as a sensor for cellular stress. Cell Stress Chaperones. 7, 222–229.

    Article  PubMed  CAS  Google Scholar 

  • Ma J. and Lindquist S. (2002) Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298, 1785–1788.

    Article  PubMed  CAS  Google Scholar 

  • Ma J., Wollmann R., and Lindquist S. (2002) Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298, 1781–1785.

    Article  PubMed  CAS  Google Scholar 

  • Ma Y. and Hendershot L. M. (2001) The unfolding tale of the unfolded protein response. Cell. 107, 827–830.

    Article  PubMed  CAS  Google Scholar 

  • Ma J. and Lindquist S. (2001) Wild-type PrP and a mutant associated with prion disease are subject to retrograde transport and proteasome degradation. Proc. Natl. Acad. Sci. USA 98, 14955–14960.

    Article  PubMed  CAS  Google Scholar 

  • Ma J. and Lindquist S. (1999) De novo generation of a PrPSc-like conformation in living cells. Nat. Cell Biol. 1, 358–361.

    Article  PubMed  CAS  Google Scholar 

  • Madeo F., Engelhardt S., Herker E., et al. (2002a) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr. Genet. 41, 208–216.

    Article  PubMed  CAS  Google Scholar 

  • Madeo F., Herker E., Maldener C., et al. (2002b) A caspase-related protease regulates apoptosis in yeast. Mol. Cell. 9, 911–917.

    Article  PubMed  CAS  Google Scholar 

  • Madeo F., Frohlich E., Ligr M., et al. (1999) Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145, 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Madeo F., Frohlich E., and Frohlich K. U. (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139, 729–734.

    Article  PubMed  CAS  Google Scholar 

  • Mathew A., Shi Y., Jolly C., and Morimoto R. I. (2000) Analysis of the mammalian heat-shock response. Inducible gene expression and heat-shock factor activity. Methods Mol. Biol. 99, 217–55.

    PubMed  CAS  Google Scholar 

  • McLean P. J., Kawamata H., and Hyman B. T. (2001) Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience. 104, 901–912.

    Article  PubMed  CAS  Google Scholar 

  • McVey M., Kaeberlein M., Tissenbaum H. A., and Guarente L. (2001) The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics. 157, 1531–1542.

    PubMed  CAS  Google Scholar 

  • Meriin A. B., Zhang X., Miliaras N. B., et al. (2003) Aggregation of a polypeptide with expanded polyglutamine domain in yeast cells leads to defects in endocytosis, submitted for publication.

  • Meriin A. B., Zhang X., He, X., et al. (2002) Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  • Metzler M., Legendre-Guillemin V., Gan L., et al. (2001) HIP1 functions in clathrin-mediated endocytosis through binding to clathrin and adaptor protein 2. J. Biol. Chem.. 276, 39271–39276.

    Article  PubMed  CAS  Google Scholar 

  • Michelitsch M. D. and Weissman J. S. (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA 97, 11910–11915.

    Article  PubMed  CAS  Google Scholar 

  • Muchowski P. J. (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron. 35, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Muchowski P.J., Ning K., D’Souza-Schorey C., and Fields S. (2002) Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc. Natl. Acad. Sci. USA 99, 727–732.

    Article  PubMed  CAS  Google Scholar 

  • Muchowski P. J., Schaffar G., Sittler A., et al. (2000) Hsp70 and Hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 97, 7841–7846.

    Article  PubMed  CAS  Google Scholar 

  • Nucifora F. C. Jr., Sasaki M., Peters M. F., et al. (2001) Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Science 291, 2423–2428.

    Article  PubMed  CAS  Google Scholar 

  • Pardo, C.A., Rabin B. A., Palmer D. N., and Price D. L. (1994) Accumulation of the adenosine triphosphate synthase subunit C in the mnd mutant mouse. A model for neuronal ceroid lipofuscinosis. Am. J. Pathol. 144, 829–835.

    PubMed  CAS  Google Scholar 

  • Pearce D. A., Carr C. J., Das B., and Sherman F. (1999a) Phenotypic reversal of the btn1 defects in yeast by chloroquine: a yeast model for Batten disease. Proc. Natl. Acad. Sci. USA 96, 11341–11345.

    Article  PubMed  CAS  Google Scholar 

  • Pearce D. A., Ferea T., Nosel S. A., Das B., and Sherman F. (1999b) Action of BTN1, the yeast orthologue of the gene mutated in Batten disease. Nat. Genet. 22, 55–58.

    Article  PubMed  CAS  Google Scholar 

  • Pearce D. A., Nosel S. A., and Sherman F. (1999c) Studies of pH regulation by Btn1p, the yeast homolog of human Cln3p. Mol. Genet. Metab. 66, 320–323.

    Article  PubMed  CAS  Google Scholar 

  • Pearce D. A. and Sherman F. (1999) Investigation of Batten disease with the yeast Saccharomyces cerevisiae. Mol. Genet. Metab. 66, 314–319.

    Article  PubMed  CAS  Google Scholar 

  • Pearce D. A. and Sherman F. (1998) A yeast model for the study of Batten disease. Proc. Natl. Acad. Sci. USA 95, 6915–6918.

    Article  PubMed  CAS  Google Scholar 

  • Pearce D. A. and Sherman F. (1997) BTN1, a yeast gene corresponding to the human gene responsible for Batten’s disease, is not essential for viability, mitochondrial function, or degradation of mitochondrial ATP synthase. Yeast 13, 691–697.

    Article  PubMed  CAS  Google Scholar 

  • Pirkkala L., Nykanen P., and Sistonen L. (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 15, 1118–1131.

    Article  PubMed  CAS  Google Scholar 

  • Puccio H. and Koenig M. (2000) Recent advances in the molecular pathogenesis of Friedreich ataxia. Hum. Mol. Genet. 9, 887–892.

    Article  PubMed  CAS  Google Scholar 

  • Rao D. S., Chang J. C., Kumar P. D., et al. (2001) Huntingtin interacting protein 1 Is a clathrin coat binding protein required for differentiation of late spermatogenic progenitors. Mol. Cell Biol. 21, 7796–7806.

    Article  PubMed  CAS  Google Scholar 

  • Richard G. F., Goellner G. M., McMurray C. T., and Haber J. E. (2000) Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J. 19, 2381–2390.

    Article  PubMed  CAS  Google Scholar 

  • Richard G. F., Dujon B., and Haber J. E. (1999) Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats. Mol. Gen. Genet. 261, 871–882.

    Article  PubMed  CAS  Google Scholar 

  • Schulz J. B., Lindenau J., Seyfried J., and Dichgans J. (2000) Glutathione, oxidative stress and neurodegeneration. Eur. J. Biochem. 267, 4904–4911.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz A. L. and Ciechanover A. (1999) The ubiquitin-proteasome pathway and pathogenesis of human diseases. (review). Annu. Rev. Med. 50, 57–74.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer J. K. and Livingston D. M. (1998) Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum. Mol. Genet. 7, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Severin F. F. and Hyman A. A. (2002) Pheromone induces programmed cell death in S. cerevisiae. Curr. Biol. 12, R233-R235.

    Article  PubMed  CAS  Google Scholar 

  • Sherman M. Y. and Goldberg A. L. (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron. 29, 15–32.

    Article  PubMed  CAS  Google Scholar 

  • Singaraja R. R., Hadano S., Metzler M., et al. (2002) HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum. Mol. Genet. 11, 2815–2828.

    Article  PubMed  CAS  Google Scholar 

  • Sittler A., Walter, S., Wedemeyer, N., et al. (1998) SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol Cell. 2, 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Sondheimer N., Lopez N., Craig E. A., and Lindquist S. (2001) The role of Sis1 in the maintenance of the [RNQ+] prion. EMBO J. 20, 2435–2442.

    Article  PubMed  CAS  Google Scholar 

  • Sondheimer N. and Lindquist S. (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell. 5, 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Steffan J. S., Kazantsev A., Spasic-Boskovic O., et al. (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 97, 6763–6768.

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz L. M., Scharfe C., Deutschbauer A. M., et al. (2002) Systematic screen for human disease genes in yeast. Nat. Genet. 31, 400–404.

    PubMed  CAS  Google Scholar 

  • Takekawa M., Maeda T., and Saito, H. (1998) Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways. EMBO J. 17, 4744–4752.

    Article  PubMed  CAS  Google Scholar 

  • Telenius H., Kremer B., Goldberg Y. P., et al. (1994) Somatic and gonadal mosaicism of the Huntington disease gene Cag repeat in brain and sperm. Nat. Genet. 6, 409–414.

    Article  PubMed  CAS  Google Scholar 

  • Tissenbaum H. A. and Guarente L. (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 410, 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Velier J., Kim M., Schwarz C., et al. (1998) Wild-type and mutant huntingtins function in vesicle trafficking in the secretory and endocytic pathways. Exp. Neurol. 152, 34–40.

    Article  PubMed  CAS  Google Scholar 

  • Vidair C. A., Huang R. N., and Doxsey S. J. (1999) Heat shock causes protein aggregation and reduced protein solubility at the centrosome and other cytoplasmic locations. Int. J. Hyperthermia. 12, 681–695.

    Google Scholar 

  • Wickner R. B., Taylor K. L., Edskes H. K., et al. (2001) Yeast prions act as genes composed of self-propagating protein amyloids. Adv. Protein Chem. 57, 313–334.

    Article  PubMed  CAS  Google Scholar 

  • Wigley W. C., Fabunmi R. P., Lee M. G., et al. (1999) Dynamic association of proteasomal machinery with the centrosome. J. Cell Biol. 145, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Wilson R. B. and Roof D. M. (1997) Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat. Genet. 16, 352–357.

    Article  PubMed  CAS  Google Scholar 

  • Winzeler E. A., Shoemaker D. D., Astromoff A., et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.

    Article  PubMed  CAS  Google Scholar 

  • Wojcik C., Schroeter D., Wilk S., Lamprecht J., and Paweletz N. (1996) Ubiquitin-mediated proteolysis centers in HeLa cells—indication from studies of an inhibitor of the chymotrypsin-like activity of the proteasome. Eur. J. Cell Biol. 71, 311–318.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Y. Sherman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherman, M.Y., Muchowski, P.J. Making yeast tremble. Neuromol Med 4, 133–146 (2003). https://doi.org/10.1385/NMM:4:1-2:133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:4:1-2:133

Index entries

Navigation