Advertisement

Neuroinformatics

, Volume 3, Issue 3, pp 281–286 | Cite as

Autonomous robots based on inspiration from biology

The relation to neuroinformatics
  • Michael A. Arbib
Commentary

Keywords

Autonomous Robot Biological Neural Network Reticular Neuron Visuomotor Coordination Frog Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amari, S. -I., Arbib, M. A., and Kötter, R. (2003) Introduction to the 2003 special issue on neuroinformatics. Neural Netw. 16, 1235–1236.CrossRefGoogle Scholar
  2. Arbib, M. A. (1982) Rana computatrix: An evolving model of visuo-motor co-ordination in frog and toad. In: Machine Intelligence 10. Hayes, J. E., Michie, D., and Pao, Y. H. (eds.) Ellis Horwood Publishers, Chichester, pp. 501–517.Google Scholar
  3. Arbib, M. A. (2003) Rana computatrix to human language: towards a computational neuroethology of language evolution. Phil. Trans. R. Soc. Lond. A 361, 2345–2379.CrossRefGoogle Scholar
  4. Arbib, M. A., Tinroongroj, N., and Plangprasopchok, A. The Brain Operation Database (BODB): from data and models to Brain Operating Principles and back again (in preparation).Google Scholar
  5. Beer, R. D. (1990) Intelligence as Adaptive Behavior: An Experiment in Computational Neuroethology. Academic Press, New York.Google Scholar
  6. Beer, R. D., Ritzmann, R., and McKenna, T. M. (eds.) (1992) Biological Neural Networks in Invertebrate Neuroethology and Robotics. Academic Press, New York.Google Scholar
  7. Braitenberg, V. (1965) Taxis, kinesis, decussation. Prog. Brain Res. 17, 210–222.PubMedCrossRefGoogle Scholar
  8. Braitenberg, V. (1984) Vehicles: experiments in synthetic psychology. MIT Press, Cambridge, MA.Google Scholar
  9. Cliff, D. (1992) Neural networks for visual tracking in an artificial fly. In: Towards a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life (ECAL91). Varela, F. J. and Bourgine, P. (eds.) MIT Press Bradford Books, Cambridge, MA, pp. 78–87.Google Scholar
  10. Damper, R. I. (2003) Preface, Special issue on Biologically Inspired Robotics. Phil. Trans. R. Soc. Lond. A 361, 2081–2083.CrossRefGoogle Scholar
  11. Damper, R. I., French, R. L. B., and Scutt, T. W. (2000) ARBIB: An autonomous robot based on inspiration from biology. Robotics Autonomous Syst. 31, 247–274.CrossRefGoogle Scholar
  12. Guazzelli, G., Bota, B., and Arbib, M. A. (2001) Competitive Hebbian learning and the hippocampal place cell system: modeling the interaction of visual and path integration cues. Hippocampus 11, 216–239.PubMedCrossRefGoogle Scholar
  13. Guazzelli, A., Corbacho, F. J., Bota, M., and Arbib, M. A. (1998) Affordances, motivation, and the world graph theory. Adaptive Behav. 6, 435–471.CrossRefGoogle Scholar
  14. House, D., (1989) Depth perception in frogs and toads: a study in neural computing. Lecture Notes in Biomathematics 80. Springer-Verlag, Berlin.Google Scholar
  15. Itti, L., Koch, C., and Niebur, E. (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259.CrossRefGoogle Scholar
  16. Karniel, A., Fleming, K. M., Sanguineti, V., Alford, S., and Mussa-Ivaldi, F. A. (2002) Dynamic properties of the lamprey’s neuronal circuits as it drives a two-wheeled robot. In: Proceeding of the SAB’2002 Workshop on Motor Control in Humans and Robots.Google Scholar
  17. Lettvin, J. Y., Maturana, H., McCulloch, W. S., and Pitts, W. H. (1959) What the frog’s eye tells the frog brain. Proc. IRE 47, 1940–1951.CrossRefGoogle Scholar
  18. Morris, R. (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11, 47–60.PubMedCrossRefGoogle Scholar
  19. Mussa-Ivaldi, A. and Miller, L.E. (2003) Brain-machine interfaces: computational demands and clinical needs meet basic neuroscience. Trends Neurosci. 28, 329–334.CrossRefGoogle Scholar
  20. Reger, B. D., Fleming, K. M., Sanguineti, V., Alford, S., and Mussa-Ivaldi, F. A. (2000) Connecting brains to robots: an artificial body for studying the computational properties of neural tissue. Artif. Life 6, 307–324PubMedCrossRefGoogle Scholar
  21. Seth, A. K., Sporn, O., and Krichmar, J. L. (2005) Neurorobotic Models in Neuroscience and Neuroinformatics. Neuroinformatics 3:3, 167–170.PubMedCrossRefGoogle Scholar
  22. Sutton, R. S. and Barto, A. G. (1998) Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA, USA.Google Scholar
  23. Walter, W. G. (1953) The living brain. Duckworth, London (Pelican edition, 1961, Penguin Books, Harmondsworth).Google Scholar
  24. Wiener, N. (1948) Cybernetics: or Control and Communication in the Animal and the Machine, The Technology Press and Wiley, 2nd edn. The MIT Press, Cambridge, MA, USA: p. 1961.Google Scholar

Copyright information

© Humana Press Inc 2005

Authors and Affiliations

  • Michael A. Arbib
    • 1
  1. 1.Computer Science, Neuroscience, and the USC Brain ProjectUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations